Một mảnh vườn hình chữ nhật có chiều rộng bằng 1/4 chiều dài. Tìm diện tích hình chữ nhật đố biết rằng nếu tăng chiều dài thêm 3 m và giảm chiều rộng 3m thì diện tích bị hụt đi 81 m2.
Nhờ anh chị giúp em với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi chiều rộng mảnh đất là $a$ m thì chiều dài mảnh đất là $3\times a$ (m)
Diện tích ban đầu: $a\times 3\times a$
Diện tích lúc sau: $(a-3)(3\times a+3)$
Theo bài ra:
$a\times 3\times a-(a-3)(3\times a+3)=225$
$a\times 3\times a-[a\times 3\times a+3\times a-9\times a-9)=225$
$a\times 3\times a-(a\times 3\times a-6\times a-9)=225$
$6\times a+9=225$
$a=36$ (m)
Vậy chiều rộng là $36$ m. Chiều dài là: $36\times 3=108$ (m)
Diện tích mảnh đất:
$36\times 108=3888$ (m2)
Gọi chiều dài,chiều rộng của mảnh vườn lần lượt là a,b(m) \(\left(a>b>0\right)\)
Theo đề: \(\left\{{}\begin{matrix}ab=80\\\left(a-2\right)\left(b+3\right)=80+32=112\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}ab=80\left(1\right)\\ab+3a-2b-6=112\left(2\right)\end{matrix}\right.\)
Thế (1) vào (2): \(\Rightarrow3a-2b=38\Rightarrow3a=2b+38\)
Ta có: \(3ab=3.80=240\Rightarrow b\left(2b+38\right)=240\Rightarrow2b^2+38b-240=0\)
\(\Rightarrow\left(b-5\right)\left(b+24\right)=0\) mà \(b>0\Rightarrow b=5\Rightarrow a=16\)
Bài giải
Gọi chiều dài là x(m)
Gọi chiều rộng là y(m)
Diện tích mảnh vườn ban đầu là: x.y=80 (m2) (1)
Diện tích mảnh vườn khi thay đổi chiều dài, chiều rộng là: (x-2).(y+3) = 112 (m2) (2)
từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}xy=80\\\left(x-2\right)\left(y+3\right)=112\end{matrix}\right.\)
từ (1) => x= \(\dfrac{80}{y}\)
Thay x= \(\dfrac{80}{y}\) vào (2) => x=16 ; y = 5
Vậy...............................
Tính nhanh
(3/4 x 5/7+ 1/9x 13/47)x(1/5-7/25x5/7)
Giải gấp với ạ!!!
Gọi chiều dài mảnh đất là x (x<8; x>y)
Gọi chiều rộng mảnh đất là y (y>3)
Nếu giảm chiều rộng 3m và tăng chiều dài 8m thì diện tích giảm đi 54m2 nên ta có PT:
xy - (x+8)(y+3) =54
⇔xy-xy-3x+8y+24=54
⇔-3x+8y=30 (1)
-Nếu tăng chiều rộng 2m giảm chiều dài 4m thì diện tích mảnh vườn tăng thêm 32m2 nên ta có PT:
(x-4)(y+2)-xy=32
⇔xy+2x-4y-8-xy=32
⇔2x-4y=40 (2)
Từ (1) và (2) ⇒HPT: \(\left\{{}\begin{matrix}-3x+8y=30\\2x-4y=40\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x=110\\y=45\end{matrix}\right.\)
Vậy chiều dài và chiều rộng mảnh đất lần lượt là 110m và 45m
Gọi chiều rộng và chiều dài ban đầu của mảnh vườn đó lần lượt là x và y (m)
( y > x >0)
=> Diện tích ban đầu của mảnh vườn đó là: xy (m2)
Nếu giảm chiều rộng đi 3 m và tăng chiều dài thêm 8 m
=> Chiều rộng mới là: x - 3 (m); Chiều dài mới là: y + 8 (m)
=> Diện tích mới của mảnh vườn đó là: (x - 3)(y + 8) = xy + 8x - 3y - 24 (m2)
và diện tích mảnh vườn đó giảm 54 m2 so với diện tích ban đầu nên ta có phương trình: xy + 8x - 3y - 24 + 54 = xy
<=> \(\left\{{}\begin{matrix}\text{8x - 3y = -30}\\-4x+2y=40\end{matrix}\right.< =>\left\{{}\begin{matrix}x=15\\y=50\end{matrix}\right.\left(TM\right)}}\) (1)
Nếu tăng chiều rộng thêm 2m và giảm chiều dài đi 4 m
=> Chiều rộng mới là: x + 2 (m); Chiều dài mới là: y - 4 (m)
=> Diện tích mới của mảnh vườn đó là: (x + 2)(y - 4) = xy - 4x +2y - 8 (m2)
và diện tích mảnh vườn đó tăng 32 m2 so với diện tích ban đầu nên ta có phương trình: xy - 4x +2y - 8 - 32 = xy
<=> - 4x +2y = 40 (2)
Từ (1) và (2) ta có hệ phương trình sau:
\(\left\{{}\begin{matrix}\text{8x - 3y = -30}\\-4x+2y=40\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=15\\y=50\end{matrix}\right.\left(tmđk\right)\)
Vậy chiều rộng và chiều dài ban đầu của mảnh vườn đó lần lượt là 15 và 50 (m)
Hiệu chiều dài và chiều rộng là :
81:3 + 3 = 30 ( m )
Chiều dài mảnh vườn là :
30 : ( 3 -1) x 3 = 45 ( m )
Chiều rông mảnh vườn là :
45 - 30 = 15 (m)
Diện tích mảnh vườn hình chữ nhật là :
45x15 = 675 ( m2 )
Đ/S : 675m2
Một HCN có chiều rộng bằng 1/4 chiều dài nếu thêm vào chiều dài 3m và chiều rộng giảm 3m thì ta có diện tích mới là 207m vuông tính điện tích ban đầu
EM ƠI K 3 CÁI CHỊ GIẢI CHO
NHA ^_^