⚡giúp em với em cần gấp ạ
1.2*1/3+1/3*1/4+1/4*1/5+...+1/10*1/20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{13}{20}+\dfrac{3}{5}+x=\dfrac{5}{6}\)
\(\Rightarrow\dfrac{5}{4}+x=\dfrac{5}{6}\)
\(\Rightarrow x=\dfrac{5}{6}-\dfrac{5}{4}\)
\(\Rightarrow x=\dfrac{-5}{12}\)
b) \(x+\dfrac{1}{3}=\dfrac{2}{5}-\dfrac{-1}{3}\)
\(\Rightarrow x+\dfrac{1}{3}=\dfrac{11}{15}\)
\(\Rightarrow x=\dfrac{11}{15}-\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{2}{5}\)
c)\(\dfrac{-5}{8}-x=\dfrac{-3}{20}-\dfrac{-1}{6}\)
\(\dfrac{-5}{8}-x=\dfrac{1}{60}\)
\(\Rightarrow x=\dfrac{-5}{8}-\dfrac{1}{60}\)
\(\Rightarrow x=\dfrac{-77}{120}\)
d) \(\dfrac{3}{5}-x=\dfrac{1}{4}+\dfrac{7}{10}\)
\(\Rightarrow\dfrac{3}{5}-x=\dfrac{19}{20}\)
\(\Rightarrow x=\dfrac{3}{5}-\dfrac{19}{20}\)
\(\Rightarrow x=\dfrac{-7}{20}\)
e) \(\dfrac{-3}{7}-x=\dfrac{4}{5}+\dfrac{-2}{3}\)
\(\Rightarrow\dfrac{-3}{7}-x=\dfrac{2}{15}\)
\(\Rightarrow x=\dfrac{-3}{7}-\dfrac{2}{15}\)
\(\Rightarrow x=\dfrac{-59}{105}\)
g) \(\dfrac{-5}{6}-x=\dfrac{7}{12}+\dfrac{-1}{3}\)
\(\Rightarrow\dfrac{-5}{6}-x=\dfrac{1}{4}\)
\(\Rightarrow x=\dfrac{-5}{6}-\dfrac{1}{4}\)
\(\Rightarrow x=\dfrac{-13}{12}\)
\(M=\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{5}{19}}{\left(\frac{1}{17}+\frac{1}{7}-\frac{-3}{35}\right).\frac{-4}{3}}\)
\(M=\frac{\left(\frac{1}{30}-\frac{7}{20}\right).\frac{5}{19}}{\left(\frac{24}{119}+\frac{3}{35}\right).\frac{-4}{3}}\)
\(M=\frac{\frac{-19}{60}.\frac{5}{19}}{\frac{171}{595}.\frac{-4}{3}}\)
\(M=\frac{-1}{12}:\frac{-228}{595}\)
\(M=\frac{595}{2736}\)
Ta có:
\(M=\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right)\times\frac{5}{19}}{\left(\frac{1}{17}+\frac{1}{7}-\frac{-3}{35}\right)\times\frac{-4}{3}}\)
\(M=\frac{\left(\frac{1}{30}-\frac{7}{20}\right)\times\frac{5}{19}}{\left(\frac{24}{119}+\frac{3}{35}\right)\times\frac{-4}{3}}\)
\(M=\frac{\frac{-19}{60}\times\frac{5}{19}}{\frac{171}{595}\times\frac{-4}{3}}\)
\(M=\frac{-1}{12}\div\frac{-228}{595}\)
\(M=\frac{595}{2736}\)
Vậy \(M=\frac{595}{2736}\)
uses crt;
var i,n:integer;
s:real;
begin
clrscr;
n:=1;
s:=0;
while (n<=10000) do
begin
n:=n+2;
s:=s+1/n;
end;
writeln(s:4:2);
readln;
end.
\(M=\dfrac{3}{1+2}+\dfrac{3}{1+2+3}+...+\dfrac{3}{1+2+...+2022}\)
\(=\dfrac{3}{\dfrac{2\left(2+1\right)}{2}}+\dfrac{3}{\dfrac{3\left(3+1\right)}{2}}+...+\dfrac{3}{\dfrac{2022\left(2022+1\right)}{2}}\)
\(=\dfrac{6}{2\left(2+1\right)}+\dfrac{6}{3\left(3+1\right)}+...+\dfrac{6}{2022\cdot2023}\)
\(=\dfrac{6}{2\cdot3}+\dfrac{6}{3\cdot4}+...+\dfrac{6}{2022\cdot2023}\)
\(=6\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2022\cdot2023}\right)\)
\(=6\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)
\(=6\cdot\left(\dfrac{1}{2}-\dfrac{1}{2023}\right)=6\cdot\dfrac{2021}{4046}=\dfrac{12126}{4046}< 3\)
mà \(3< \dfrac{10}{3}\)
nên \(M< \dfrac{10}{3}\)
\(\frac{5}{3}-\frac{1}{4}+\frac{1}{3}-\frac{3}{4}\)
\(=\frac{5}{3}+\frac{-1}{4}+\frac{1}{3}+\frac{-3}{4}\)
\(=\left(\frac{5}{3}+\frac{1}{3}\right)+\left(\frac{-1}{4}+\frac{-3}{4}\right)\)
\(=\frac{6}{3}+\frac{-4}{4}\)
\(=2+\left(-1\right)\)
\(=1\)
\(5\frac{3}{4}:3+2\frac{1}{4}\times\frac{1}{3}-\frac{3}{8}\)
\(=\frac{23}{4}\times\frac{1}{3}+\frac{9}{4}\times\frac{1}{3}-\frac{3}{8}\)
\(=\left(\frac{23}{4}+\frac{9}{4}\right)\times\frac{1}{3}-\frac{3}{8}\)
\(=8\times\frac{1}{3}-\frac{3}{8}\)
\(=\frac{8}{3}-\frac{3}{8}\)
\(=\frac{55}{24}\)
Sửa đề: 1/2*1/3+1/3*1/4+...+1/19*1/20
=1/2-1/3+1/3-1/4+...+1/19-1/20
=1/2-1/20=10/20-1/20=9/20