Tìm một phân số tối giảm biết khi cộng mẫu số và tử số và giữ nguyên mẫu số thì ta được một phân số gấp 9 lần phấn số ban đầu.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi phân số ấy lúc đầu là \(\frac{n}{m}\)
Nếu chỉ cộng mẫu thì ta đc phân số \(\frac{n}{n+m}\)và phân số này < \(\frac{n}{m}\)2 lần
Để \(\frac{n+m}{2m}\)gấp 2 lần p/s ban đầu thì n+m=4 lần
=>m gấp 3 lần n
=>P/s thỏa mãn theo đk đề bài là 1/3
Gọi phân số cần tìm là \(\frac{a}{b}\)
Theo đề bài ta có :
\(\frac{a+b}{b+b}=\frac{2a}{b}\Rightarrow\frac{a+b}{2b}=\frac{4a}{2b}\Rightarrow a+b=4a\Rightarrow b=3a\Rightarrow\frac{a}{b}=\frac{1}{3}\)
Vậy phân số cần tìm là \(\frac{1}{3}\).
Gọi phân số tối giản lúc đầu là a/b
Nếu chỉ cộng mẫu số ta được phân số a/a+b; phân số này nhỏ hơn phân số a/b 2 lần.
Để a+b/2b gấp 2 lần phân số lúc đầu thì a+b phải bằng 4 lần
=> Mẫu số b phải gấp 3 lần tử số a
Phân số tối giản thỏa mãn điều kiện trên là 1/3.
Gơi phân số cần tìm là \(\frac{a}{b}\)
Biết : \(\frac{a+b}{b}=\frac{9a}{b}\)
\(\Rightarrow a+b=9a\)
\(\Rightarrow b=8a\)
Thay b = 8a, ta có: \(\frac{9a}{b}=\frac{9a}{8a}=\frac{9}{8}\)
\(\Rightarrow\frac{a}{b}=\frac{1}{8}\)
kb nha!