Cho các số thực a, b, c đôi một khác nhau thỏa mãn \(0\le a;b;c\le2\)
CMR: \(\frac{1}{^{\left(a-b\right)^2}}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{9}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ vcl giải
Có a²(b+c)-b²(a+c)=2013-2013=0
a²b+a²c-b²a-b²c=0
a²b-b²a+a²c-b²c=0
ab(a-b)+c(a²-b²)=ab(a-b)+c(a-b)(a+b)=0
(a-b)[ab+c(a+b)]=0
Suy ra 1 trong 2 số =0 mà a và b khác nhau nên ab+c(a+b)=0
Suy ra ab và c(a+b) là 2 số đối suy ra ab×c và c×c(a+b) là 2 số đối suy ra abc và c²(a+b) là 2 số đối
=>c²(a+b)-abc=0
<=>c²(a+b)=-abc
Lại có ab + c(a+b)=0 => ab + ac + cb =0
<=> a(b+c)+cb=0
<=> a²(b+c) + abc =0
=>abc =0-2013=-2013=> abc = -2013
Nên c²(a+b)=-(abc)=-(-2013)=2013 .
Vậy c²(a+b)=2023 ezzzz
Bài này dễ lớp 6 mà
Lời giải:
$a^2(b+c)=b^2(b+c)$
$\Leftrightarrow a^2(b+c)-b^2(b+c)=0$
$\Leftrightarrow (a^2-b^2)(b+c)=0$
$\Leftrightarrow (a-b)(a+b)(b+c)=0$
Vì $a,b,c$ đôi 1 khác nhau nên $a-b\neq 0$
$\Rightarrow (a+b)(b+c)=0$
Mà $b+c\neq 0$ (do nếu $b+c=0$ thì $a^2(b+c)=0$ (trái với đề))
$\Rightarrow a+b=0$
$\Rightarrow H=c^2(a+b)=0$
Từ \(a^2-b=b^2-c\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=b-c\)
\(\Leftrightarrow a+b=\frac{b-c}{a-b}\)
\(\Rightarrow a+b+1=\frac{b-c}{a-b}+1=\frac{a-c}{a-b}\)
Tương tự ta có:
\(\hept{\begin{cases}b+c+1=\frac{b-a}{b-c}\\c+a+1=\frac{c-b}{c-a}\end{cases}}\)
\(\Rightarrow\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)=\frac{a-c}{a-b}.\frac{b-a}{b-c}.\frac{c-b}{c-a}=-1\)
Vì vai trò bình đẳng của các ẩn \(a,b,c\) là như nhau nên không mất tính tổng quát, ta có thể giả sử:
\(2\ge c>b>a\ge0\) \(\left(\alpha\right)\) (do \(a,b,c\) đôi một khác nhau nên cũng không đồng thời bằng nhau)
Áp dụng bđt \(AM-GM\) cho từng bộ số gồm có các số không âm, ta có:
\(\left(i\right)\) Với \(\frac{1}{\left(a-b\right)^2}>0;\) \(\left[-\left(a-b\right)\right]>0\)\(\frac{1}{\left(a-b\right)^2}+\left[-\left(a-b\right)\right]+\left[-\left(a-b\right)\right]\ge3\sqrt[3]{\frac{1}{\left(a-b\right)^2}.\left[-\left(a-b\right)\right]\left[-\left(a-b\right)\right]}=3\)
\(\Rightarrow\) \(\frac{1}{\left(a-b\right)^2}\ge3-2\left(b-a\right)\) \(\left(1\right)\)
\(\left(ii\right)\) Với \(\frac{1}{\left(b-c\right)^2}>0;\) \(\left[-\left(b-c\right)\right]>0\)
\(\frac{1}{\left(b-c\right)^2}+\left[-\left(b-c\right)\right]+\left[-\left(b-c\right)\right]\ge3\sqrt[3]{\frac{1}{\left(b-c\right)^2}.\left[-\left(b-c\right)\right]\left[-\left(b-c\right)\right]}=3\)
\(\Rightarrow\) \(\frac{1}{\left(b-c\right)^2}\ge3-2\left(c-b\right)\) \(\left(2\right)\)
\(\left(iii\right)\) Với \(\frac{1}{\left(c-a\right)^2}>0;\) \(\frac{c-a}{16}>0\)
\(\frac{1}{\left(c-a\right)^2}+\frac{c-a}{8}+\frac{c-a}{8}\ge3\sqrt[3]{\frac{1}{\left(c-a\right)^2}.\frac{\left(c-a\right)}{8}.\frac{\left(c-a\right)}{8}}=\frac{3}{4}\)
\(\Rightarrow\) \(\frac{1}{\left(c-a\right)^2}\ge\frac{3}{4}-\frac{c-a}{4}\) \(\left(3\right)\)
Cộng từng vế ba bất đẳng thức \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\) , ta được:
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge3-2\left(b-a\right)+3-2\left(c-b\right)+\frac{3}{4}-\frac{c-a}{4}\)
nên \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}-\frac{9\left(c-a\right)}{4}=\frac{27}{4}+\frac{9\left(a-c\right)}{4}\)
Mặt khác, từ \(\left(\alpha\right)\) ta suy ra được: \(\hept{\begin{cases}a\ge0\\2\ge c\end{cases}}\)
nên \(a+2\ge c\) hay nói cách khác \(a-c\ge-2\)
Do đó, \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}+\frac{9.\left(-2\right)}{4}=\frac{9}{4}\)
Dấu \("="\) xảy ra khi và chỉ khi \(\hept{\begin{cases}a=0\\b=1\\c=2\end{cases}}\) (thỏa mãn \(\left(\alpha\right)\) )
Vì vai trò bình đẳng của các ẩn \(a,b,c\) là như nhau nên không mất tính tổng quát, ta có thể giả sử:
\(2\ge c>b>a\ge0\) \(\left(\alpha\right)\) (do \(a,b,c\) đôi một khác nhau nên cũng không đồng thời bằng nhau)
Áp dụng bđt \(AM-GM\) cho từng bộ số gồm có các số không âm, ta có:
\(\left(i\right)\) Với \(\frac{1}{\left(a-b\right)^2}>0;\) \(\left[-\left(a-b\right)\right]>0\)\(\frac{1}{\left(a-b\right)^2}+\left[-\left(a-b\right)\right]+\left[-\left(a-b\right)\right]\ge3\sqrt[3]{\frac{1}{\left(a-b\right)^2}.\left[-\left(a-b\right)\right]\left[-\left(a-b\right)\right]}=3\)
\(\Rightarrow\) \(\frac{1}{\left(a-b\right)^2}\ge3-2\left(b-a\right)\) \(\left(1\right)\)
\(\left(ii\right)\) Với \(\frac{1}{\left(b-c\right)^2}>0;\) \(\left[-\left(b-c\right)\right]>0\)
\(\frac{1}{\left(b-c\right)^2}+\left[-\left(b-c\right)\right]+\left[-\left(b-c\right)\right]\ge3\sqrt[3]{\frac{1}{\left(b-c\right)^2}.\left[-\left(b-c\right)\right]\left[-\left(b-c\right)\right]}=3\)
\(\Rightarrow\) \(\frac{1}{\left(b-c\right)^2}\ge3-2\left(c-b\right)\) \(\left(2\right)\)
\(\left(iii\right)\) Với \(\frac{1}{\left(c-a\right)^2}>0;\) \(\frac{c-a}{16}>0\)
\(\frac{1}{\left(c-a\right)^2}+\frac{c-a}{8}+\frac{c-a}{8}\ge3\sqrt[3]{\frac{1}{\left(c-a\right)^2}.\frac{\left(c-a\right)}{8}.\frac{\left(c-a\right)}{8}}=\frac{3}{4}\)
\(\Rightarrow\) \(\frac{1}{\left(c-a\right)^2}\ge\frac{3}{4}-\frac{c-a}{4}\) \(\left(3\right)\)
Cộng từng vế ba bất đẳng thức \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\) , ta được:
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge3-2\left(b-a\right)+3-2\left(c-b\right)+\frac{3}{4}-\frac{c-a}{4}\)
nên \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}-\frac{9\left(c-a\right)}{4}=\frac{27}{4}+\frac{9\left(a-c\right)}{4}\)
Mặt khác, từ \(\left(\alpha\right)\) ta suy ra được: \(\hept{\begin{cases}a\ge0\\2\ge c\end{cases}}\)
nên \(a+2\ge c\) hay nói cách khác \(a-c\ge-2\)
Do đó, \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}+\frac{9.\left(-2\right)}{4}=\frac{9}{4}\)
Dấu \("="\) xảy ra khi và chỉ khi \(a=0;b=1;c=2\) (thỏa mãn \(\left(\alpha\right)\) )