B=-1/3+1/32_1/33+...+1/3100_3/3101
(Làm nhanh hộ mình nha)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 3A = 3.(1+3+32+33+...+399+3100)
3A = 3+32+33+...+3100+3101
Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)
2A = 3101−1
⇒ A = 3101−1
2
Vậy A = 3101−1
2
Dịch ra là: Ta có: 3A = 3. (1 + 3 + 32 + 33 + ... + 399 + 3100) (1 + 3 + 32 + 33 + ... + 399 + 3100) 3A = 3 + 32 + 33 + ... + 3100 + 31013 + 32 + 33 + ... + 3100 + 3101 Suy ra: 3A - A = (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) ⇒⇒ A = 3101−123101−12 Vậy A = 3101−12
Mà đoạn 2A sai nhé bạn, sửa lại:
2A = 3101−13101−1 2A=-10001
A=-10001/2
A=-5000,5
Vậy A=-5000,5
`#3107.101107`
`A = 1+ 3 + 3^2+3^3+…+3^101?`
`= (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ... + (3^99 + 3^100 + 3^101)`
`= (1 + 3 + 3^2) + 3^3 * (1 + 3 + 3^2) + ... + 3^99 * (1 + 3 + 3^2)`
`= (1 + 3 + 3^2) * (1 + 3^3 + ... + 3^99)`
`= 13 * (1 + 3^3 + ... + 3^99)`
Vì `13 * (1 + 3^3 + ... + 3^99) \vdots 13`
`=> A \vdots 13`
Vậy, `A \vdots 13.`
Lời giải:
Đặt biểu thức là $A$
\(A=\frac{1}{3}+\frac{1}{3^3}+\frac{1}{3^5}+....+\frac{1}{3^{99}}+\frac{1}{3^{101}}\)
\(3^2.A=3+\frac{1}{3}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
Trừ theo vế:
\(8A=3-\frac{1}{3^{101}}\Rightarrow A=\frac{3}{8}-\frac{1}{8.3^{101}}\)
Akai Haruma Giáo viên Giúp em câu em gửi trong inb nhé chị
P/s : Sorry bạn chủ tus nhé , mình lượn ngay đây
Số các số hạng là: 101 – 0 + 1 = 102 số.
Ta nhận thấy:
1 + 3 + 32 = 1 + 3 + 9 = 13;
33 + 34 + 35 = 33(1 + 3 + 32) = 33.13;
…
Mà 102 có tổng các chữ số là 1 + 0 + 2 = 3 chia hết cho 3 nên 102 chia hết cho 3, nghĩa là:
A = (1 + 3 + 32) + (33 + 34 + 35) + … + (399 + 3100 + 3101)
= (1 + 3 + 32) + 33(1 + 3 + 32) + … + 399(1 + 3 + 32)
= 13 + 33.13 + … + 399.13
= 13.(1 + 33 + … + 399) chia hết cho 13.
Vậy A chia hết cho 13.
\(A=1+3+3^2+...+3^{101}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{99}\right)⋮13\)
#)Giải :
\(A=1+2+2^2+...+2^{100}\)
\(2A=2+2^2+2^3+...+2^{101}\)
\(2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)
\(A=2^{101}-1\)
\(B=1+3^2+3^4+...+3^{100}\)
\(3^2B=3^2+3^4+3^6+...+3^{102}\)
\(3^2B-B=\left(3^2+3^4+3^6+...+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
\(8B=3^{102}-1\)
\(B=\frac{3^{102}-1}{8}\)
\(C=1+5^3+5^6+...+5^{99}\)
\(5^2C=5^3+5^6+5^9+...+5^{102}\)
\(5^2C-C=\left(5^3+5^6+5^9...+5^{102}\right)-\left(1+5^3+5^6+...+5^{99}\right)\)
\(24C=5^{102}-1\)
\(C=\frac{5^{102}-1}{24}\)
a) A = 1 + 22 + ... + 2100
=> 2A = 22 + 23 + ... + 2101
Lấy 2A - A = (2 + 22 + ... + 2101) - (1 + 22 + ... 2100)
A = 2101 - 1
b) B = 1 + 32 + 34 + ... + 3100
=> 32B = 32 + 34 + 36 + ..... + 3102
=> 9B = 32 + 34 + 36 + ..... + 3102
Lấy 9B - B = ( 32 + 34 + 36 + ..... + 3102) - (1 + 32 + 34 + ... + 3100)
8B = 3102 - 1
B = \(\frac{3^{102}-1}{8}\)
c) C = 1 + 53 + 56 + ... + 599
=> 53.C = 53 . 56 . 59 + ... + 5102
=> 125.C = 53 . 56 . 59 + ... + 5102
Lấy 125.C - C = (53 . 56 . 59 + ... + 5102) - (1 + 53 + 56 + ... + 599)
124.C = 5102 - 1
=> C = \(\frac{5^{102}-1}{124}\)
Bài này khó wa
=>3B=\(-1+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
=>3B+B=4B=\(\left(-1+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\right)+\left(-\frac{1}{3}+...+\frac{1}{3^{100}}-\frac{1}{3^{101}}\right)\)
=>4B=\(-1-\frac{1}{3^{101}}\)
=>B=\(-\frac{1+\frac{1}{3^{101}}}{4}\)