Cho (O) và một dây cung AC cố định. Trên cung lớn AC lấy điểm B bất kì. Phân giác của góc ABC cắt cạnh AC tại M và cắt (O) tại K. Kẻ đường cao BH của tam giác ABC
a)Chứng minh OK⊥AC
b)Chứng minh BM là tia phân giác của góc OBH
c)Chứng minh KC2=KM.KB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, HS tự chứng minh
b, Chứng minh ∆NMC:∆NDA và ∆NME:∆NHA
c, Chứng minh ∆ANB có E là trực tâm => AE ⊥ BN mà có AK ⊥ BN nên có ĐPCM
Chứng minh tứ giác EKBH nội tiếp, từ đó có A K F ^ = A B M ^
d, Lấy P và G lần lượt là trung điểm của AC và OP
Chứng minh I thuộc đường tròn (G, GA)
a: góc ABK=1/2*sđ cung AK
góc CBK=1/2*sđ cung CK
mà góc ABK=góc CBK
nên sđ cung AK=sđ cung CK
=>OK vuông góc AC
c: Xét ΔKCM và ΔKBC có
góc KCM=góc KBC
góc CKM chung
=>ΔKCM đồng dạng với ΔKBC
=>KC/KB=KM/KC
=>KC^2=KB*KM