K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

\(-4x^2+5x-21\)

\(=-4\left(x^2-\frac{5}{4}x\right)-21\)

\(=-4\left(x^2-2x.\frac{5}{8}+\frac{25}{64}\right)-21+\frac{25}{16}\)

\(=-4\left(x-\frac{5}{8}\right)^2-\frac{311}{16}\)

Có \(\left(x-\frac{5}{8}\right)^2\ge0\) với mọi x

=> \(-4\left(x-\frac{5}{8}\right)^2\le0\)với mọi x

=> \(-4\left(x-\frac{5}{8}\right)^2-\frac{311}{16}\le\frac{-311}{16}\)với mọi x

Dấu "=" xảy ra <=> \(x-\frac{5}{8}=0\)<=> \(x=\frac{5}{8}\)

KL: GTLN của biểu thức là \(\frac{-311}{16}\)<=> \(x=\frac{5}{8}\)

6 tháng 8 2016

\(A=-4x^2+5x-21\)

\(=-\left[\left(2x\right)^2-2\times2x\times\frac{5}{4}+\left(\frac{5}{4}\right)^2-\left(\frac{5}{4}\right)^2+21\right]\)

\(=-\left[\left(2x-\frac{5}{4}\right)^2+\frac{311}{16}\right]\)

\(\left(2x-\frac{5}{4}\right)^2\ge0\)

\(\left(2x-\frac{5}{4}\right)^2+\frac{311}{16}\ge\frac{311}{16}\)

\(-\left[\left(2x-\frac{5}{4}\right)^2+\frac{311}{16}\right]\le-\frac{311}{16}\)

Vậy Max A = \(-\frac{311}{16}\) khi x = \(\frac{5}{8}\)

12 tháng 12 2016

\(A=x^2-4x+7=\left(x^2-4x+4\right)+3=\left(x-2\right)^2+3\)

Vì: \(\left(x-2\right)^2\ge0\)

=> \(\left(x-2\right)^2+3\ge3\)

Vậy GTNN của A là 3 khi x=2

\(B=2x^2+12x-1=2\left(x^2+6x+9\right)-19=2\left(x+3\right)^2-19\)

Vì: \(2\left(x+3\right)^2\ge0\)

=> \(2\left(x+3\right)^2-19\ge-19\)

Vậy GTNN của B là -19 khi x=-3

\(C=5x-x^2=-\left(x^2-5x+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)

Vì: \(-\left(x-\frac{5}{2}\right)^2\le0\)

=> \(-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

Vậy GTLN của C là \(\frac{25}{4}\) khi \(x=\frac{5}{2}\)

12 tháng 12 2016

Căm ơn bạn nhiều nhé ! Nếu được thì bạn làm giúp tớ bài hình bên trên nhé.

27 tháng 9 2016

a) = 9(x2 - 2.x/2.9 + 1/324) - 9/324 +5

GTNN A = 4,97

b) = (2x +y)2 + y2 + 2018

GTNN B = 2018 khi x=0;y=0

c) = -4(x2 - 2.3x/ 4.2 + 9/16) +9/16 +10

GTLN C = 169/16

d) = -(x-y)2 - (2x +1) +1 + 2016

GTLN D = 2017

(trg bn cho bài khó dữ z, làm hại cả não tui)

29 tháng 9 2016

cảm ơn nhiều lắm đấy

1 tháng 4 2019

C = 5 x - x 2 = - x 2 - 5 x = - x 2 - 2 . 5 / 2   x + 5 / 2 2 - 5 / 2 2 = - x - 5 / 2 2 - 25 / 4 = - x - 5 / 2 2 + 25 / 4 V ì - x - 5 / 2 2 ≤ 0 ⇒ - x - 5 / 2 2 + 25 / 4 ≤ 25 / 4

Suy ra: C ≤ 25/4 .

C = 25/4 khi và chỉ khi x - 5/2 = 0 suy ra x = 5/2

Vậy C = 25/4 là giá trị lớn nhất tại x = 5/2 .

14 tháng 11 2018

M = 4x2 + 4x + 5 

M = (4x2 + 4x + 1) + 4

M = (2x + 1)2 + 4

Vì (2x + 1)2 ≥ 0

=> (2x + 1)2 + 4 ≥ 4 <=> M ≥ 4

=> GTNN của M bằng 4

Dấu "=" xảy ra khi\(\left(2x+1\right)^2=0\Leftrightarrow x=\frac{-1}{2}\)

Vậy GTNN của M bằng 4

14 tháng 11 2018

À thôi không cần giải nữa mình ra kết quả rồi

21 tháng 9 2021

\(M=4x-x^2+3\\ =-(x^2-4x-3)\\ =-(x^2-4x+4)+7\\ =-(x+2)^2+7 \leq7,\forall x\in \mathbb{R}\quad (\mathrm{vì}-(x+2)^2\leq0)\)

Dấu bằng xảy ra khi và chỉ khi \(-(x+2)^2=0\Leftrightarrow x+2=0 \Leftrightarrow x=-2\)

Vậy \(\mathrm{Max}M=7\Leftrightarrow x=-2\).

21 tháng 9 2021

Giải cả cách hộ mk

21 tháng 10 2023

loading...  loading...  loading...  

28 tháng 10 2019

Ta có: A = 2x2 + 4x + 5 = 2(x2 + 2x + 1) + 3 = 2(x + 1)2 + 3 \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1

Vậy MinA = 3 <=> x = -1

28 tháng 10 2019

\(2x^2+4x+5\)

\(=2\left(x^2+2x+\frac{5}{2}\right)\)

\(=2\left(x^2+2x+1+\frac{3}{2}\right)\)

\(=2\left[\left(x+1\right)^2+\frac{3}{2}\right]\)

\(=2\left(x+1\right)^2+3\ge3\)

Dấu '' = '' xảy ra khi 

\(\Leftrightarrow2\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy............................

P/s : sai thì thôi nha

22 tháng 10 2019

toi ko bt

A= -4 - x^2 +6x

  =-(x2-6x+9)+5

=-(x-3)2+5\(\le\)5

Dấu "=" xảy ra khi x=3

Vậy...............

B= 3x^2 -5x +7

\(=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)-\frac{59}{12}\)

\(=3\left(x-\frac{5}{6}\right)^2-\frac{59}{12}\ge\frac{-59}{12}\)

Dấu "=" xảy ra khi \(x=\frac{5}{6}\)

Vậy.................

10 tháng 12 2017

\(D=\frac{1}{x^2+5x+14}=\frac{1}{\left(x^2+2.\frac{5}{2}x+\frac{5}{2}^2\right)+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\le\frac{1}{\frac{31}{4}}=\frac{4}{31}\)

Dấu "=" xảy ra khi \(\left(x+\frac{5}{2}\right)^2=0\Rightarrow x=-\frac{5}{2}\)

Vậy GTLN của \(D=\frac{4}{31}\)tại \(x=-\frac{5}{2}\)

10 tháng 12 2017

\(D=\frac{1}{x^2+5x+14}=\frac{1}{\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\)

D đạt giá trị lớn nhất khi và chỉ khi \(x+\frac{5}{2}=0\leftrightarrow x=\frac{-5}{2}\)

Vậy \(D=\frac{4}{31}\leftrightarrow x=\frac{-5}{2}\)