K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

Rút gọn nha các cậu

17 tháng 3 2020

\(A=\left(\frac{6x+1}{x^2-6x}+\frac{6x-1}{x^2+6x}\right)\times\frac{x^2-36}{12x^2+12}\)

\(A=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right]\times\frac{\left(x+6\right)\left(x-6\right)}{12\left(x^2+1\right)}\)

\(A=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x}\times\frac{1}{12\left(x^2+1\right)}\)

\(A=\frac{12\left(x^2+1\right)}{x}\times\frac{1}{12\left(x^2+1\right)}=\frac{1}{x}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Lời giải:

a) ĐKXĐ: \(\left\{\begin{matrix} x^2-6x\neq 0\\ x^2+6x\neq 0\\ x^2+1\neq 0\end{matrix}\right.\Leftrightarrow x\neq 0; x\neq \pm 6\)

b)

\(A=\left(\frac{6x+1}{x^2-6x}+\frac{6x-1}{x^2+6x}\right).\frac{x^2-36}{x^2+1}=\frac{(6x+1)(x+6)+(6x-1)(x-6)}{x(x-6)(x+6)}.\frac{x^2-36}{x^2+1}\)

\(=\frac{6x^2+37x+6+6x^2-37x+6}{x(x-6)(x+6)}.\frac{(x-6)(x+6)}{x^2+1}=\frac{12(x^2+1)}{x(x-6)(x+6)}.\frac{(x-6)(x+6)}{x^2+1}=\frac{12}{x}\)

NV
12 tháng 7 2021

a.

\(\left(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}\right)^2-2sin^2\dfrac{x}{2}cos^2\dfrac{x}{2}=\dfrac{1}{2}\)

\(\Leftrightarrow2-\left(2sin\dfrac{x}{2}cos\dfrac{x}{2}\right)^2=1\)

\(\Leftrightarrow1-sin^2x=0\)

\(\Leftrightarrow cos^2x=0\)

\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)

NV
12 tháng 7 2021

b.

\(\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\dfrac{7}{16}\)

\(\Leftrightarrow1-\dfrac{3}{4}\left(2sinx.cosx\right)^2=\dfrac{7}{16}\)

\(\Leftrightarrow16-12.sin^22x=7\)

\(\Leftrightarrow3-4sin^22x=0\)

\(\Leftrightarrow3-2\left(1-cos4x\right)=0\)

\(\Leftrightarrow cos4x=-\dfrac{1}{2}\)

\(\Leftrightarrow4x=\pm\dfrac{2\pi}{3}+k2\pi\)

\(\Leftrightarrow x=\pm\dfrac{\pi}{6}+\dfrac{k\pi}{2}\)

\(1,ĐK:x\ne0;x\ne\pm6\)

\(A=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right].\frac{\left(x+6\right)\left(x-6\right)}{12\left(x^2+1\right)}\)

\(=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x}.\frac{1}{12\left(x^2+1\right)}\)

\(=\frac{12\left(x^2+1\right)}{x}.\frac{1}{12\left(x^2+1\right)}=\frac{1}{x}\)

\(2,A=\frac{1}{x}=\frac{1}{\frac{1}{\sqrt{9+4\sqrt{5}}}}=\sqrt{9+4\sqrt{5}}\)

12 tháng 2 2020

Cho tam giác ABC vuông tại B có góc B1=B; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.

a) Tính góc ABH.

b) Chứng minh đường thẳng d vuông góc với BH.

8 tháng 7 2016

\(\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}\)

\(=\frac{1}{\left(x+3\right)^2}+-\frac{1}{\left(x-3\right)^2}+\frac{x}{\left(x+3\right)\left(x-3\right)}\)

\(=\frac{\left(x-3\right)^2-\left(x+3\right)^2+x\left(x+3\right)\left(x-3\right)}{\left(x+3\right)^2\left(x-3\right)^2}\)

\(=\frac{x^2-6x+9-x^2-6x-9+x^3-9x}{\left(x+3\right)^2\left(x-3\right)^2}\)

\(=\frac{x^3-21x}{\left(x+3\right)^2\left(x-3\right)^2}\)

20 tháng 5 2017

Ta có:\(\left(\frac{6}{x^2-6x}+\frac{1}{x+6}\right):\frac{x^2+36}{x^2-36}\)

   \(=\left(\frac{6\left(x+6\right)}{x\left(x-6\right)\left(x+6\right)}+\frac{x\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}\right).\frac{x^2-6^2}{x^2+36}\)

     \(=\left(\frac{6x+36+x^2-6x}{x\left(x-6\right)\left(x+6\right)}\right).\frac{\left(x-6\right)\left(x+6\right)}{x^2+36}\)

        \(=\frac{x^2+36}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+36}\)

      \(=\frac{1}{x}\)

Kiểm tra đi bạn phải là \(\frac{1}{x}\)

7 tháng 8 2016

\(\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}\)

\(=\frac{1}{\left(x+3\right)^2}+\frac{-1}{\left(x-3\right)^2}+\frac{x}{\left(x+3\right)\left(x-3\right)}\)

\(=\frac{\left(x-3\right)^2-\left(x+3\right)^2+x\left(x+3\right)\left(x-3\right)}{\left(x+3\right)^2\left(x-3\right)^2}\)

\(=\frac{x^2-6x+9-x^2-6x-9+x^3-9x}{\left(x+3\right)^2\left(x-3\right)^2}\)

\(=\frac{x^3-21x}{\left(x+3\right)^2\left(x-3\right)^2}\)

7 tháng 8 2016

\(\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}\)
\(=\frac{1}{\left(x+3\right)^2}-\frac{1}{\left(x-3\right)^2}+\frac{x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{\left(x-3\right)^2}{\left(x+3\right)^2\left(x-3\right)^2}-\frac{\left(x+3\right)^2}{\left(x+3\right)^2\left(x-3\right)^2}+\frac{x\left(x+3\right)\left(x-3\right)}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(=\frac{x^2-6x+9-x^2-6x-9+x^3-9x}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(=\frac{x^3-21x}{\left(x+3\right)^2\left(x-3\right)^2}\)