K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=3+3^2+3^3+....+3^{99}\)

\(\Rightarrow3A=3^2+3^3+.....+3^{100}\)

\(\Rightarrow3A-A=3^{100}-3\)

Thế vào ta dc :

 \(2A+3=3^x\)

\(\Rightarrow2.\frac{3^{100}-3}{2}+3=3^x\)

\(\Rightarrow3^{100}-3+3=3^x\)

\(\Rightarrow3^{100}=3^x\Rightarrow x=100\)

Vậy .................

11 tháng 1 2024

Câu 3:

\(A=3+3^2+...+3^{100}\)

\(3A=3^2+3^3+...+3^{101}\)

\(3A-A=3^2+3^3+...+3^{101}-\left(3+3^2+...+3^{100}\right)\)

\(2A=3^{101}-3\) 

Mà: \(2A+3=3^N\)

\(\Rightarrow3^{101}-3+3=3^N\)

\(\Rightarrow3^{101}=3^N\)

\(\Rightarrow N=101\)

Vậy: ... 

Câu 1:

\(A=4+2^2+...+2^{20}\)

Đặt \(B=2^2+2^3+...+2^{20}\)

=>\(2B=2^3+2^4+...+2^{21}\)

=>\(2B-B=2^3+2^4+...+2^{21}-2^2-2^3-...-2^{20}\)

=>\(B=2^{21}-4\)

=>\(A=B+4=2^{21}-4+4=2^{21}\) là lũy thừa của 2

Câu 6:

Đặt A=1+2+3+...+n

Số số hạng là \(\dfrac{n-1}{1}+1=n-1+1=n\left(số\right)\)

=>\(A=\dfrac{n\left(n+1\right)}{2}\)

=>\(A⋮n+1\)

Câu 5:

\(A=5+5^2+...+5^8\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\left(5^5+5^6\right)+\left(5^7+5^8\right)\)

\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+5^4\left(5+5^2\right)+5^6\left(5+5^2\right)\)

\(=30\left(1+5^2+5^4+5^6\right)⋮30\)

2S+1 là lũy thừa của 3

23 tháng 6 2017

trình bày ra mà kết quả cũng ko đúng

10 tháng 8 2018

\(A=3+3^2+3^3+3^4+...+3^{100}\)

=>  \(3A=3^2+3^3+3^4+3^5+...+3^{101}\)

=>  \(3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)

=>  \(2A=3^{101}-3\)

=> \(2A+3=3^{101}\)

Vậy 2A + 3  là lũy thừa của 3

26 tháng 9 2018

Ta có: \(A=3+3^2+3^3+3^4+...+3^{100}\)

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\)

\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)

\(\Rightarrow2A=3^{101}-3\)

\(\Rightarrow2A+3=3^{101}-3+3=3^{101}\)

Vậy ...

15 tháng 11 2017

a, Có 2A = 4.2+2^3+2^4+...+2^21

A=2A-A=(4.2+2^3+2^4+...+2^21)-(4+2^2+2^3+...+2^20) = 4.2 + 2^21 - 4 - 2^2 = 2^21

=> A là lũy thừa cơ số 2

b, Có 3A=3^2+3^3+3^4+...+3^101

2A=3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+....+3^100) = 3^101-3

=> 2A+3 = 3^101-3+3 = 3^101

=> A là lũy thừa của 3

k mk nha

6 tháng 1 2021

giúp e giải vs e đang cần gấp

6 tháng 1 2021

a, \(A=3+3^2+...+3^{120}\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)

\(=4\left(3+3^3+3^5+...+3^{119}\right)\)

\(\Rightarrow A⋮4\)

\(A=3+3^2+...+3^{120}\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\)

\(=13\left(3+3^4+...+3^{118}\right)\)

\(\Rightarrow A⋮13\)

b, \(3A=3^2+3^3+...+3^{121}\)

\(\Rightarrow2A=3^{121}-3=3\left(3^{120}-1\right)\)

Vì \(3^{120}=3^{4.30}\) có chữ số tận cùng là 1 suy ra \(3^{120}-1\) có chữ số tận cùng là 0

\(\Rightarrow A=\dfrac{3\left(3^{120}-1\right)}{2}\) có chữ số tận cùng là 0

c, Đề là \(2A+3\) thì có vẻ hợp lí hơn

\(2A+3=3^{121}-3+3=3^{121}\) là lũy thừa của 3

10 tháng 7 2016

a. A = 4 + 22 + 23 + ... + 230

Đặt B = 22 + 2+ ... + 230

2B = 23 + 24 + ... + 231

2B - B = 231 - 22

B = 231 - 4

A = 4 + 231 - 4 = 231, là lũy thừa của 2

=> đpcm

b. A = 3 + 32 + 33 + ... + 3106

3A = 32 + 33 + 34 + ... + 3107

3A - A = 3107 - 3

2A = 3107 - 3

2A + 3 = 3107, là lũy thừa của 3

=> đpcm

Ủng hộ mk nha ^_-