cho x,y,zduongw thay đổi, thoả mãn xyz=1 . tìm max của S = \(\frac{\sqrt{x}}{1+x+xy}+\frac{\sqrt{y}}{1+y+yz}+\frac{\sqrt{z}}{1+z+zx}\orbr{\begin{cases}\\\end{cases}}\)
mình tính rút gọn dc : \(\frac{\sqrt{z}\left(\sqrt{x}+1+\sqrt{xz}\right)}{xz+z+1}\)