K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2017

Vì đa thức  13 x 4 y 3 - 5 x 3 y 3 + 6 x 2 y 2  chia hết cho 5 x n y n nên mỗi hạng tử của đa thức trên chia hết cho  5 x n y n  Do đó, hạng tử  6 x 2 y 2  chia hết cho  5 x n y n  ⇒ 0 ≤ n ≤ 2 . Vậy n ∈ {0;1;2}

29 tháng 6 2017

Vì đa thức 5 x 3 - 7 x 2 + x  chia hết cho 3 x n  nên mỗi hạng tử của đa thức chia hết cho x n

=> hạng tử x – có số mũ nhỏ nhất của đa thức chia hết cho  3 x n

Do đó, x : x n  ⇒ 0 ≤ x ≤ 1 . Vậy n ∈ {0; 1}

5 tháng 8 2021

a)Ta có:2x4-2x3+x2+x+a

     = 2x3(x-2)+2x2(x-2)+5x(x-2)+11(x-2)+a+22

     = (x-2)(2x3+2x2-5x+11)+(a+22)

Để (x-2)(2x3+2x2-5x+11)+(a+22)⋮(x-2) thì a+22=0⇔a=-22

b)Ta có:2x3-3x2+x+a

         = 2x2(x+2)-5x(x+2)+11(x+2)+(a-22)

        = (x+2)(2x2-5x+11)+(a-22)

Để (x+2)(2x2-5x+11)+(a-22)⋮(x+2) thì a-22=0⇔a=22

29 tháng 10 2021

Bài 1:

Ta có: \(5x^3-3x^2+2x+a⋮x+1\)

\(\Leftrightarrow5x^3+5x^2-8x^2-8x+10x+10+a-10⋮x+1\)

\(\Leftrightarrow a-10=0\)

hay a=10

19 tháng 10 2021

Bài 3:

Ta có: \(2n^2+n-7⋮n-2\)

\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{3;1;5;-1\right\}\)

31 tháng 7 2019

Ta có: 

27 tháng 12 2016

Ta có: \(\left(15x-6x+7\right):\left(2x+1\right)=5\)

Áp dụng định lý Bozout, ta có:

\(f\left(\frac{-1}{2}\right)=15\cdot\frac{-1}{2}-6\cdot\frac{-1}{2}+7=\frac{5}{2}\)

Vậy số dư là 2,5