K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

1,

<=> \(\left(x-1\right)\left(x-2\right)^2=0\)

=> x=1 hoặc x=2

2, 

<=>\(\left(x+1\right)\left(2x^2-3x+6\right)\)=0

=> x=-1

18 tháng 7 2017

1.

<=> ( x -1 ) ( x - 2 ) 2 = 0

=> x = 1 hoặc x = 2

2.

<=> ( x + 1 ) ( 2x2 - 3x + 6 ) = 0

=> x = -1

27 tháng 12 2021

1: \(=x^2+1\)

3: \(=\left(x-y-z\right)^2\)

15 tháng 10 2021

Bài 2: 

a: \(x^2+5x-6=\left(x+6\right)\left(x-1\right)\)

b: \(5x^2+5xy-x-y\)

\(=5x\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(5x-1\right)\)

c:\(-6x^2+7x-2\)

\(=-6x^2+3x+4x-2\)

\(=-3x\left(2x-1\right)+2\left(2x-1\right)\)

\(=\left(2x-1\right)\left(-3x+2\right)\)

15 tháng 10 2021

1.

a) \(=x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2\)

b) \(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)

\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

c) \(=5\left[\left(x^2-2xy+y^2\right)-4z^2\right]=5\left[\left(x-y\right)^2-4z^2\right]\)

\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)

2.

a) \(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)

b) \(=5x\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(5x-1\right)\)

c) \(=-\left[3x\left(2x-1\right)-2\left(2x-1\right)\right]=-\left(2x-1\right)\left(3x-2\right)\)

3.

b) \(=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)

c) \(=-\left[5x\left(x-3\right)-1\left(x-3\right)\right]=-\left(x-3\right)\left(5x-1\right)\)

4.

a) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)

b) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\)

\(\Rightarrow\left(x+5\right)\left(2-x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

14 tháng 6 2023

`1,(4x^3+3x^3):x^3+(15x^2+6x):(-3x)=0`

`<=> 4 + 3 + (-5x) + (-2)=0`

`<=> -5x+5=0`

`<=>-5x=-5`

`<=>x=1`

`2,(25x^2-10x):5x +3(x-2)=4`

`<=> 5x - 2 + 3x-6=4`

`<=> 8x -8=4`

`<=> 8x=12`

`<=>x=12/8`

`<=>x=3/2`

`3,(3x+1)^2-(2x+1/2)^2=0`

`<=> [(3x+1)-(2x+1/2)][(3x+1)+(2x+1/2)]=0`

`<=>( 3x+1-2x-1/2)(3x+1+2x+1/2)=0`

`<=>( x+1/2) (5x+3/2)=0`

`@ TH1`

`x+1/2=0`

`<=>x=0-1/2`

`<=>x=-1/2`

` @TH2`

`5x+3/2=0`

`<=> 5x=-3/2`

`<=>x=-3/2 : 5`

`<=>x=-15/2`

`4, x^2+8x+16=0`

`<=>(x+4)^2=0`

`<=>x+4=0`

`<=>x=-4`

`5, 25-10x+x^2=0`

`<=> (5-x)^2=0`

`<=>5-x=0`

`<=>x=5`

14 tháng 6 2023

\(x^2+8x+16=x^2+2.x.4+4^2=\left(x+4\right)^2\)

\(25-10x+x^2=5^2-2.5.x+x^2=\left(5-x\right)^2\)

a: \(=\dfrac{x^3-3x^2-7x+x^2-3x-7}{x^2-3x-7}=x+1\)

b:\(=\dfrac{x^3+x^2+3x^2+3x+5x+5}{x+1}=x^2+3x+5\)

c:\(=\dfrac{x^3-3x^2-7x+2x^2-6x-14}{x^2-3x-7}=x+2\)

d: \(=\dfrac{x^2\left(x+5\right)+5x+25-25}{x+5}=x^2+5-\dfrac{25}{x+5}\)

8 tháng 9 2023

a) \(4x^2-16+\left(3x+12\right)\left(4-2x\right)\)

\(=\left(2x-4\right)\left(2x+4\right)-3\left(x+4\right)\left(2x-4\right)\)

\(=\left(2x-4\right)\left(2x+4-3x-12\right)\)

\(=-\left(2x-4\right)\left(x+8\right)\)

b) \(x^3+x^2y-15x-15y\)

\(=x^2\left(x+y\right)-15\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-15\right)\)

c) \(3\left(x+8\right)-x^2-8x\)

\(=3\left(x+8\right)-x\left(x+8\right)\)

\(=\left(x+8\right)\left(3-x\right)\)

d) \(x^3-3x^2+1-3x\)

\(=x^3+1-3x^2-3x\)

\(=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1-3x\right)\)

\(=\left(x+1\right)\left(x^2-4x+1\right)\)

d) \(5x^2-5y^2-20x+20y\)

\(=5\left(x^2-y^2\right)-20\left(x-y\right)\)

\(=5\left(x-y\right)\left(x+y\right)-20\left(x-y\right)\)

\(=5\left(x-y\right)\left(x+y-4\right)\)

18 tháng 8 2023

\(x^6+2x^3+1=0\)

\(\Leftrightarrow\left(x^3\right)^2+2x^3+1=0\)

\(\Leftrightarrow\left(x^3+1\right)^2=0\)

\(\Leftrightarrow x^3=\left(-1\right)^3\)

\(\Leftrightarrow x=-1\)

___________

\(x\left(x-5\right)=4x-20\)

\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

_____________

\(x^4-2x^2=8-4x^2\)

\(\Leftrightarrow x^2\left(x^2-2\right)+\left(4x^2-8\right)=0\)

\(\Leftrightarrow x^2\left(x^2-2\right)+4\left(x^2-2\right)=0\)

\(\Leftrightarrow\left(x^2-2\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow x^2=2\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

_______________

\(\left(x^3-x^2\right)-4x^2+8x-4\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

22 tháng 5 2021

\(\left(1-x\right)\left(5x+3\right)=\left(3x-7\right)\left(x-1\right)\)

\(< =>\left(1-x\right)\left(5x+3+3x-7\right)=0\)

\(< =>\left(1-x\right)\left(8x-4\right)=0\)

\(< =>\orbr{\begin{cases}1-x=0\\8x-4=0\end{cases}< =>\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}}\)

22 tháng 5 2021

\(\left(x-2\right)\left(x+1\right)=x^2-4\)

\(< =>\left(x-2\right)\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)

\(< =>\left(x-2\right)\left(x+1-x-2\right)=0\)

\(< =>-1\left(x-2\right)=0\)

\(< =>2-x=0< =>x=2\)

20 tháng 6 2023

\(1,=3x^2-6x+x-2=3x^2-5x-2\\ 2,??\\ 3,=3x^3y^2:3xy+6x^2y^3:3xy-12xy^4:3xy=x^2y+2xy^2-4y^3\\ 4,=3x^3y^2:4xy+6x^2y^3:4xy-12xy^4:4xy\\ =\dfrac{3}{4}x^2y+\dfrac{3}{2}xy^2-3x^3\\ 5,\left(2x^3-5x^2+7x-6\right):\left(2x-3\right)=x^2-x+2\\ 6,\left(x^4-x^3+3x^2+x+2\right):\left(x^2-1\right)=x^2-x+4\left(dư6\right)\) 

1: =3x^2+x-6x-2=3x^2-5x-2

3: =x^2y+2xy^2-4y^3

4: =3/4x^2y+3/2xy^2-3y^3

5: \(=\dfrac{2x^3-3x^2-2x^2+3x+4x-6}{2x-3}=x^2-x+2\)