K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2022

lỗi kìa

26 tháng 3 2022

lỗi

3 tháng 9 2021

a) \(A=\sqrt{1-x}+\sqrt{1+x}\)

\(\Rightarrow A^2=1-x+1+x+2\sqrt{\left(1-x\right)\left(1+x\right)}=2+2\sqrt{1-x^2}\)

Do \(-x^2\le0\Rightarrow1-x^2\le1\Rightarrow A^2=2+2\sqrt{1-x^2}\le2+2=4\)

\(\Rightarrow A\le2\)

 

\(maxA=2\Leftrightarrow x=0\)

Áp dụng bất đẳng thức: \(\sqrt{x}+\sqrt{y}\ge\sqrt{x+y}\)(với \(x,y\ge0\))

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2\ge x+y\)

\(\Leftrightarrow x+y+2\sqrt{xy}\ge x+y\Leftrightarrow2\sqrt{xy}\ge0\left(đúng\right)\)

\(A=\sqrt{1-x}+\sqrt{1+x}\ge\sqrt{1-x+1+x}=\sqrt{2}\)

\(maxA=\sqrt{2}\Leftrightarrow\)\(\left[{}\begin{matrix}1-x=0\\1+x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

 

3 tháng 9 2021

Cho mình sửa dòng cuối là \(minA=\sqrt{2}\) nhé

9 tháng 12 2021

\(R_{tđ}=R_1+R_2=100+80=180\Omega\)

\(I_1=I_2=I=\dfrac{U}{R}=\dfrac{210}{180}=\dfrac{7}{6}A\)

Chiều dài 1 vòng quấn:

\(C=\pi\cdot d=0,25\pi\left(m\right)\)

Chiều dài dây dẫn:

\(l=n\cdot C=120\cdot0,25\pi=94,25m\)

Tiết diện dây:

\(S=\rho\dfrac{l}{R_2}=0,5\cdot10^{-6}\cdot\dfrac{94,25}{80}=5,89\cdot10^{-7}m^2\)

9 tháng 12 2021

a) vì R1 mắc nối tiếp với R2 

=> Rtđ=R1+R2=100+80=180 (Ω)

b) cường độ dòng điện qua mỗi điện trở và mạch chính là :

    I=I1=I2=U/Rtđ=240/180=4/3 (A)

c) chiều dài 1 vòng quấn là :

  l1=3,14.0,025=0,0785m

chiều dài dây dẫn là

l=120.0,0785=9,42 vòng

tiết diện của dây dẫn là 

R=p.  l/S => S= l.p/R =0,5.10^-6  .9,42/80=5,89.10^-8 m^2

3 tháng 10 2021

\(c,\Rightarrow\left|x-\dfrac{1}{9}\right|=-\dfrac{4}{5}\\ \Rightarrow x\in\varnothing\left(\left|x-\dfrac{1}{9}\right|\ge0>-\dfrac{4}{5}\right)\\ d,\Rightarrow\left\{{}\begin{matrix}3x-2=0\\4y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{7}{4}\end{matrix}\right.\\ e,\Rightarrow\left\{{}\begin{matrix}2x+1=0\\x-y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\x=y=-\dfrac{1}{2}\end{matrix}\right.\Rightarrow x=y=-\dfrac{1}{2}\)

\(D=10\cdot\left(-2.5\right)\cdot0.4\cdot\left(-0.1\right)\)

\(=10\cdot1\cdot2.5\cdot0.4\)

=10