Cho tam giác ABC vuông tại A (AC > AB). Trên đoạn AC lấy điểm M và vẽ đường tròn đường kính MC. Tia BM cắt đường tròn tại D. Đường thẳng AD cắt đường tròn tại S.
a. C/m: ABCD là tứ giác nội tiếp.
b. C/m: CA là phân giác của góc SCB.
c. Gọi H là giao điểm thứ hai của đường tròn đường kính MC với BC. C/m: các đường thẳng AB; MH; CD đồng qui.
d. Biết CM = a; Cˆ = 300. Tính diện tích hình quạt OMmH ( với cung MmH là cung nhỏ.)
e. C/m : M là tâm đường tròn nội tiếp tam giác ADH.
f. ABˆC = 720 ; BCˆD = 73o tính các góc của tam giác AHD
g. Trong trường hợp DA là tiếp tuyến của đường tròn đường kính MC thì M ở vị trí nào?
a: góc MDC=1/2*sđ cung MC=90 độ
=>góc BDC=90 độ
Xét tứ giác ABCD có
góc CAB=góc CDB=90 độ
=>ABCD nội tiếp
b: ABCD nội tiếp
=>góc BCA=góc BDA
=>góc BCA=góc SCA
=>CA là phân giác của góc SCB
c: Gọi N là giao của MH với AB
góc MHC=1/2*180=90 độ
=>NH vuông góc BC
Xét ΔCBN có
NH,CA là đường cao
NH cắt CA tại M
=>M là trực tâm
=>BM vuông góc CN
=>C,D,N thẳng hàng
=>MH,CD,BA đồng quy