cho △ABC nhọn AB < AC, vẽ đường cao AH, vẽ HI ⊥ AB HK ⊥ AC
a) chứng minh : A2H = AI . AB
b) chứng minh AI . AB = AK . AC
c) chứng minh : AKI = góc ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔAHD vuông tại H và ΔADC vuông tại D có
góc HAD chung
=>ΔAHD đồng dạng với ΔADC
=>AH/AD=AD/AC
=>AD^2=AH*AC
b,c: ΔABD vuông tại D có DI là đường cao
nên DI^2=IA*IB và AD^2=AI*AB
=>AH*AC=AI*AB
=>AH/AB=AI/AC
=>ΔAHI đồng dạng với ΔABC
=>góc AIH=góc ACB
a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC
Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là tia phân giác
b: Xét ΔAIH và ΔAKH có
AI=AK
\(\widehat{IAH}=\widehat{KAH}\)
AH chung
Do đó; ΔAIH=ΔAKH
Suy ra: \(\widehat{AIH}=\widehat{AKH}=90^0\)
hay HK\(\perp\)AC
a/ Ta có: \(\Delta\) ABC cân tại A=> AB=AC
mà AC=10cm => AB=10cm
Ta có: AH là đường cao \(\Delta\) ABC => \(\Delta\) ABH vuông tại H
=> \(AH^2+BH^2=AB^2\) ( định lý Pytago)
dựa vào số liệu đầu bài và số liệu đã tính => BH=6cm
Ta có \(\Delta\) ABC cân, AH là đường cao => AH cũng là trung tuyến => H trung điểm BC
=> BH=CH=6cm
b/ Ta có: \(\Delta\) KAH vuông tại K => \(A_1+H_1=90^0=>H_1=90^o-A_1\left(1\right)\)
Ta có: \(\Delta\) ADH vuông tại D => \(A_2+H_2=90^o=>H_2=90^o-A_2\left(2\right)\)
Ta có: \(A_1=A_2\left(t.gABC\right)cân,AHlàđườngcaovàcũngsẽlàphângiác\left(\right)\) (3)
từ \(\left(1\right)\left(2\right)và\left(3\right)\) => \(H_1=H_2\)
Xét \(\Delta\) AKH và \(\Delta\) ADH có: \(\left\{{}\begin{matrix}A_1=A_2\\AHchung\\H_1=H_2\left(cmt\right)\end{matrix}\right.\)
=> \(\Delta\) AKH=\(\Delta\) ADH(g.c.g)
=> AK=AD
a: Xét ΔBHI vuông tại H và ΔAKI vuông tại K có
góc BIH=góc AIK
=>ΔBHI đồng dạng vói ΔAKI
=>IB*IK=IA*IH
b: góc BHA=góc BKA=90 độ
=>BHKA nội tiếp
=>góc BAH=góc BKH
a: ΔAHB vuông tại H có HI là đường cao
nên AH^2=AI*AB
b: ΔAHC vuông tại H có HK là đường cao
nên AK*AC=AH^2
=>AI*AB=AK*AC
c: AI*AB=AK*AC
=>AI/AC=AK/AB
Xét ΔAIK và ΔACB có
AI/AC=AK/AB
góc IAK chung
=>ΔAIK đồng dạng với ΔACB
=>góc AKI=góc ABC