cho tam giác nhọn ABC.kẻ đường cao AH,BE,CK.tính tỉ số diện tích tam giác HIK và ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2a. Theo đầu bài ta có hình:
Nhìn hình ta thấy: SMNP = SABC - ( SMBN + SAMP + SPNC )
1) Do BN = 1/4 BC => SABN = 1/4 SABC
Do AM + MB = AB mà AM = 1/4 AB => MB = 3/4 AB => SMBN = 3/4 SABN
=> SMBN = 3/4 * 1/4 = 3/16 SABC
2) Do AM = 1/4 AB => SAMC = 1/4 SABC
Do CP + PA = CA mà CP = 1/4 CA => PA = 3/4 CA => SAMP = 3/4 SAMC
=> SAMP = 3/4 * 1/4 = 3/16 SABC
3) Do CP = 1/4 CA => SPBC = 1/4 SABC
Do BN + NC = BC mà BN = 1/4 BC => NC = 3/4 BC => SPNC = 3/4 SPBC
=> SPNC = 3/4 * 1/4 = 3/16 SABC
Từ 1), 2), 3) và phép tính trên suy ra SMNP = SABC - ( 3/16 SABC + 3/16 SABC + 3/16 SABC ) = 7/16 SABC
Theo định lý sin ta có:
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinA=\dfrac{1}{2}\cdot4\cdot8\cdot sin30^o=8\left(cm^2\right)\)
Mà: ΔAEC vuông tại E ta có:
\(AE=sinA\cdot AC=sin30^o\cdot8=4\left(cm\right)\)
ΔABD vuông tại D nên ta có:
\(AD=sinA\cdot AB=sin30^o\cdot4=2\left(cm\right)\)
Theo định lý sin ta có:
\(S_{AED}=\dfrac{1}{2}\cdot AE\cdot AD\cdot sinA\)
\(\Rightarrow S_{AED}=\dfrac{1}{2}\cdot4\cdot2\cdot sin30^o=2\left(cm^2\right)\)
b) Ta có: ΔABC\(\sim\)ΔA'B'C'(gt)
nên \(\dfrac{S_{ABC}}{S_{A'B'C'}}=\left(\dfrac{AB}{A'B'}\right)^2\)(Định lí tỉ số diện tích của hai tam giác đồng dạng)
hay \(\dfrac{S_{ABC}}{S_{A'B'C'}}=k^2\)
a) Xét ΔHBAΔHBA và ΔABCΔABC có:
ˆAHB=ˆCAB=90∘AHB^=CAB^=90∘
ˆBB^ là góc chung
⇒ΔHBA∼ΔABC⇒ΔHBA∼ΔABC (g-g)
c) ΔABCΔABC có ADAD là đường phân giác, theo tính chất đường phân giác ta có:
⇒ABAC=DBDC=1216=34⇒ABAC=DBDC=1216=34
SΔABD=12⋅AH⋅BDSΔABD=12·AH·BD
SΔACD=12⋅AH⋅DCSΔACD=12·AH·DC
⇒SΔABDSΔACD=BDDC=34⇒SΔABDSΔACD=BDDC=34