2xy.5xy mũ 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3x^2y-6x=3x\left(xy-2\right)\)
\(b,x^2-4=x^2-2^2=\left(x-2\right)\left(x+2\right)\)
\(c,5x^2+5xy-x^2-2xy-y^2\)
\(=5x\left(x+y\right)-\left(x+y\right)\left(x+y\right)\)
\(=\left(x+y\right)\left(5x-x+y\right)\)
\(=\left(x+y\right)\left(4x+y\right)\)
Câu 1 :
\(3\left(x-3\right)\left(x+7\right)+\left(1-4\right)\left(x+4\right)+18\)
\(=3\left(x^2+4x-21\right)-3\left(x+4\right)\)
\(=3x^2+12x-63-3x-12=3x^2+9x-75\)
Thay x = 1/2 vào ta được
\(\dfrac{3.1}{4}+\dfrac{9}{2}-75=-\dfrac{279}{4}\)
Câu 2 :
\(5x^2+5xy+5x=5x\left(x+y+1\right)\)
Thay x = 60 ; y = 50 ta được
\(300\left(60+50+1\right)=33300\)
Câu 3 :
\(4x^2y^2+2xy^2+6x^2y=2xy\left(2xy+y+3x\right)\)
Thay x = 10 ; y = 1/2 ta được
\(\dfrac{2.10.1}{2}\left(\dfrac{2.10.1}{2}+\dfrac{1}{2}+30\right)=405\)
1: \(=3\left(x^2+4x-21\right)+x^2-16+18\)
\(=3x^2+12x-63+x^2+2\)
\(=4x^2+12x-61\)
\(=4\cdot\dfrac{1}{4}+12\cdot\dfrac{1}{2}-61=1-61+6=-54\)
2: \(=5\cdot60^2+5\cdot60\cdot50+5\cdot60=33300\)
3: \(=4\cdot10^2\cdot\dfrac{1}{4}+2\cdot10\cdot\dfrac{1}{4}+6\cdot100\cdot\dfrac{1}{2}=405\)
Bài 1:
a) Ta có: \(\left(15x^2\cdot y^2\cdot z\right):3xyz\)
\(=\dfrac{15x^2y^2z}{3xyz}\)
\(=5xy\)
b) Ta có: \(3x^2\cdot\left(5x^2-4x+3\right)\)
\(=3x^2\cdot5x^2-3x^2\cdot4x+3x^2\cdot3\)
\(=15x^4-12x^3+9x^2\)
c) Ta có: \(\left(2x^2-3x\right):\left(x-4\right)\)
\(=\dfrac{2x^2-8x+5x-20+20}{x-4}\)
\(=\dfrac{2x\left(x-4\right)+5\left(x-4\right)+20}{x-4}\)
\(=2x+5+\dfrac{20}{x-4}\)
d) Ta có: \(-5xy\cdot\left(3x^2y-5xy+y^2\right)\)
\(=-5xy\cdot3x^2y+5xy\cdot5xy-5xy\cdot y^2\)
\(=-15x^3y^2+25x^2y^2-5xy^3\)
Gộp các đa thức cos cùng biến lại. Sau đó cộng trừ phần hệ số. Khi gộp nhớ đem theo dấu phía trước nó nha. Mong bạn trl đúng
Sửa đề: (4x^3-5xy+2x)*(-1/2xy)
=-4x^3*1/2xy+5xy*1/2xy-2x*1/2xy
=-2x^4y+5/2x^2y^2-x^2y
\(\left(4^3-5xy+2x\right)\left(-\dfrac{1}{2}xy\right)\)
\(=\left(64-5xy+2x\right)\left(-\dfrac{1}{2}xy\right)\)
\(=\left(-\dfrac{1}{2}xy\cdot64\right)-\left(5xy\cdot-\dfrac{1}{2}xy\right)+\left(2x\cdot-\dfrac{1}{2}xy\right)\)
\(=-32xy+\dfrac{5}{2}x^2y^2-x^2y\)
a) ( 5x - y )( 25x2 + 5xy + y2 ) = ( 5x )3 - y3 = 125x3 - y3
b) ( x - 3 )( x2 + 3x + 9 ) - ( 54 + x3 ) = x3 - 33 - 54 - x3 = -27 - 54 = -81
c) ( 2x + y )( 4x2 - 2xy + y2 ) - ( 2x - y )( 4x2 + 2xy + y2 ) = ( 2x )3 + y3 - [ ( 2x )3 - y3 ]= 8x3 + y3 - 8x3 + y3 = 2y3
d) ( x + y )2 + ( x - y )2 + ( x + y )( x - y ) - 3x2 = x2 + 2xy + y2 + x2 - 2xy + y2 + x2 - y2 - 3x2 = y2
e) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 6( x + 1 )2
= x3 - 9x2 + 27x - 27 - ( x3 - 33 ) + 6( x2 + 2x + 1 )
= x3 - 9x2 + 27x - 27 - x3 + 27 + 6x2 + 12x + 6
= -3x2 + 39x + 6
= -3( x2 - 13x - 2 )
f) ( x + y )( x2 - xy + y2 ) + ( x - y )( x2 + xy + y2 ) - 2x3
= x3 + y3 + x3 - y3 - 2x3
= 0
g) x2 + 2x( y + 1 ) + y2 + 2y + 1
= x2 + 2x( y + 1 ) + ( y2 + 2y + 1 )
= x2 + 2x( y + 1 ) + ( y + 1 )2
= ( x + y + 1 )2
= [ ( x + y ) + 1 ]2
= ( x + y )2 + 2( x + y ) + 1
= x2 + 2xy + y2 + 2x + 2y + 1
\(E=-\dfrac{1}{2}xy^3+4xy-9\)
\(F=5xy+4-\dfrac{1}{2}xy^3=-\dfrac{1}{2}xy^3+5xy+4\)
\(E+F=-\dfrac{1}{2}xy^3+4xy-9+\left(-\dfrac{1}{2}xy^3\right)+5xy+4\)
\(=-xy^3+9xy-5\)
\(E-F=-\dfrac{1}{2}xy^3+4xy-9-\left[\left(-\dfrac{1}{2}xy^3\right)+5xy+4\right]\)
\(=-\dfrac{1}{2}xy^3+4xy-9+\dfrac{1}{2}xy^3-5xy-4\)
\(=-xy-13\)
\(F-E=-\left(E-F\right)=-\left(-xy-13\right)\)
\(=xy+13\)
2xy.5xy4
= (2.5)(xx)(yy4)
= 10x2y5