Giúp em giải chi tiết câu 16,17,18 vs ạ 😞😞😞🙏🙏🙏🙏
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(M\left(x;y\right)\) là điểm bất kì thuộc mp, M nằm trên đường phân giác góc tạo bởi 2 đường thẳng đã cho khi và chỉ khi:
\(d\left(M;d\right)=d\left(M;k\right)\)
\(\Leftrightarrow\dfrac{\left|2x+y\right|}{\sqrt{2^2+1^2}}=\dfrac{\left|x+2y-3\right|}{\sqrt{1^2+2^2}}\)
\(\Leftrightarrow\left|2x+y\right|=\left|x+2y-3\right|\)
\(\Rightarrow\left[{}\begin{matrix}2x+y=x+2y-3\\2x+y=-x-2y+3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-y+3=0\\x+y-1=0\end{matrix}\right.\)
Thế tọa độ E, F lần lượt vào 2 đường thẳng ta thấy cả 2 đều thỏa mãn (cho 2 giá trị cùng dấu dương)
Vậy đề bài sai, đáp án A và D đều đúng hết
11.
Đường tròn (C) tâm \(I\left(4;3\right)\) bán kính \(R=\sqrt{2}\)
\(d\left(I;\Delta\right)=\dfrac{\left|4+3-11\right|}{\sqrt{1^2+1^2}}=2\sqrt{2}\)
\(\Rightarrow d\left(M;\Delta\right)_{max}=R+d\left(I;\Delta\right)=\sqrt{2}+2\sqrt{2}=3\sqrt{2}\)
23.
Gọi I là trung điểm MN \(\Rightarrow I\left(3;3\right)\)
\(\Rightarrow\overrightarrow{IN}=\left(2;-1\right)\Rightarrow IN=\sqrt{5}\)
Phương trình đường tròn đường kính MN, nhận I là tâm và có bán kính \(R=IN\) là:
\(\left(x-3\right)^2+\left(y-3\right)^2=5\)
Thay tọa độ E vào pt ta được:
\(\left(x-3\right)^2+4=5\Rightarrow\left(x-3\right)^2=1\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\) \(\Rightarrow x_1x_2=8\)
Cả 4 đáp án của câu này đều sai
24.
Gọi \(M\left(x;y\right)\) là 1 điểm bất kì thuộc \(\Delta\)
Do \(\Delta\) là đường phân giác của góc tạo bởi d và k nên:
\(d\left(M;d\right)=d\left(M;k\right)\Leftrightarrow\dfrac{\left|2x+y\right|}{\sqrt{2^2+1^2}}=\dfrac{\left|x+2y-3\right|}{\sqrt{1^2+2^2}}\)
\(\Leftrightarrow\left|2x+y\right|=\left|x+2y-3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+y=x+2y-3\\2x+y=-x-2y+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-y+3=0\\x+y-1=0\end{matrix}\right.\)
- Với \(x-y+3=0\), ta có:
\(\left(x_E-y_E+3\right)\left(x_F-y_F+3\right)=2.1=2>0\Rightarrow E;F\) nằm cùng phía so với \(x-y+3=0\) (thỏa mãn)
- Với \(x+y-1=0\) ta có:
\(\left(x_E+y_E-1\right)\left(x_F+y_F-1\right)=2.7=14>0\Rightarrow E;F\) nằm cùng phía so với \(x+y-1=0\) (thỏa mãn)
Vậy cả đáp án A và D đều đúng
Tương tự như câu 23, câu 24 đề bài tiếp tục sai
Bán kính hình tròn:
\(18,84:3,14:2=3\left(cm\right)\)
Diện tích hình tròn:
\(3\times3\times3,14=28,26\left(cm^2\right)\)
Đường kính hình tròn:
\(3\times2=6\left(cm\right)\)
Diện tích hình thoi:
\(\dfrac{6\times6}{2}=18\left(cm^2\right)\)
Diện tích phần gạch chéo:
\(28,26-18=10,26\left(cm^2\right)\)
Câu 27.
Cơ năng vật:
\(W=\dfrac{1}{2}mv^2+mgz=\dfrac{1}{2}\cdot5\cdot10^2+5\cdot10\cdot30=1750J\)
Câu 28.
\(m=200tấn=2\cdot10^5kg\)
\(z=12km=12000m\)
\(v=720\)km/h=200m/s
Cơ năng vật:
\(W=\dfrac{1}{2}mv^2+mgz=\dfrac{1}{2}\cdot2\cdot10^5\cdot200^2+2\cdot10^5\cdot10\cdot12000=2,8\cdot10^{10}J\)
Câu 29.
a)Cơ năng vật ban đầu:
\(W=W_t=mgz=2\cdot10\cdot30=600J\)
b)Vận tốc vật khi sắp chạm đất:
\(v=\sqrt{2gh}=\sqrt{2\cdot10\cdot30}=10\sqrt{6}\)m/s
c)Tại nơi có động năng bằng thế năng.
\(W_1=W_đ+W_t=2W_t=2mgz_1\)
Bảo toàn cơ năng: \(W=W_1\)
\(\Rightarrow600=2mgz_1\)
\(\Rightarrow z_1=\dfrac{600}{2\cdot2\cdot10}=15m\)
d)Tại nơi \(W_đ=2W_t\)
Cơ năng vật: \(W_2=3W_t=3mgz_2\)
Bảo toàn cơ năng: \(W=W_2\)
\(\Rightarrow600=3mgz_2\)
\(\Rightarrow z_2=\dfrac{600}{3\cdot2\cdot10}=10m\)
a.
Trong tam giác A'BC ta có: I là trung điểm BA', M là trung điểm BC
\(\Rightarrow IM\) là đường trung bình tam giác A'BC
\(\Rightarrow IM||A'C\)
\(\Rightarrow IM||\left(ACC'A'\right)\)
Do \(A\in\left(AB'M\right)\cap\left(ACC'A'\right)\) và \(\left\{{}\begin{matrix}IM\in\left(AB'M\right)\\A'C\in\left(ACC'A'\right)\\IM||A'C\end{matrix}\right.\)
\(\Rightarrow\) Giao tuyến của (AB'M) và (ACC'A') là đường thẳng qua A và song song A'C
Qua A kẻ đường thẳng d song song A'C
\(\Rightarrow d=\left(AB'M\right)\cap\left(ACC'A'\right)\)
b.
I là trung điểm AB', E là trung điểm AM
\(\Rightarrow IE\) là đường trung bình tam giác AB'M \(\Rightarrow IE||B'M\) (1)
Tương tự ta có IN là đường trung bình tam giác AA'B' \(\Rightarrow IN||A'B'\) (2)
(1);(2) \(\Rightarrow\left(EIN\right)||\left(A'B'M\right)\)
c.
Trong mp (BCC'B'), qua K kẻ đường thẳng song song B'M lần lượt cắt BC và B'C' tại D và F
\(DF||B'M\Rightarrow DF||IE\Rightarrow DF\subset\left(EIK\right)\)
Trong mp (ABC), nối DE kéo dài cắt AB tại G
\(\Rightarrow G\in\left(EIK\right)\)
Trong mp (A'B'C'), qua F kẻ đường thẳng song song A'C' cắt A'B' tại H
Do IK là đường trung bình tam giác A'BC' \(\Rightarrow IK||A'B'\)
\(\Rightarrow FH||IK\Rightarrow H\in\left(EIK\right)\)
\(\Rightarrow\) Tứ giác DFHG là thiết diện (EIK) và lăng trụ
Gọi J là giao điểm BK và B'M \(\Rightarrow J\) là trọng tâm tam giác B'BC
\(\Rightarrow\dfrac{BJ}{BK}=\dfrac{2}{3}\)
Áp dụng talet: \(\dfrac{BM}{BD}=\dfrac{BJ}{BK}=\dfrac{2}{3}\Rightarrow BD=\dfrac{3}{2}BM=\dfrac{3}{2}.\dfrac{1}{2}BC=\dfrac{3}{4}BC\)
\(\Rightarrow MD=\dfrac{1}{4}BC=\dfrac{1}{2}CM\Rightarrow D\) là trung điểm CM
\(\Rightarrow DE\) là đường trung bình tam giác ACM
\(\Rightarrow DE||AC\Rightarrow DE||FH\)
\(\Rightarrow\) Thiết diện là hình thang
16.
Hệ tọa độ giao điểm: \(\left\{{}\begin{matrix}2+t=2+3t'\\-t=3-2t'\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}t=-9\\t'=-3\end{matrix}\right.\)
Thay \(t=-9\) vào pt d ta được: \(\left\{{}\begin{matrix}a=-7\\b=9\end{matrix}\right.\)
\(\Rightarrow a+b=2\)
17.
Do d qua M nên: \(\dfrac{-3}{a}+\dfrac{3}{2b}=1\) (1)
d cắt tia đối Ox tại A \(\Rightarrow a< 0\) và \(OA=-a\)
d cắt Oy tại b \(\Rightarrow b>0\) và \(OB=b\)
\(OA=2OB\Rightarrow-a=2b\)
Thế vào (1): \(\dfrac{-3}{a}+\dfrac{3}{-a}=1\Rightarrow a=-6\Rightarrow b=\dfrac{-a}{2}=3\)
\(\Rightarrow ab=-18\)
18.
Gọi A là giao điểm của d với Ox
\(\Rightarrow y_A=0\Rightarrow\dfrac{x_A-1}{2}=\dfrac{0+1}{-4}\Rightarrow x_A=\dfrac{1}{2}\)
\(\Rightarrow OA=\left|x_A\right|=\dfrac{1}{2}\)
Gọi B là giao điểm của d với Oy
\(\Rightarrow x_B=0\Rightarrow\dfrac{0-1}{2}=\dfrac{y_B+1}{-4}\Rightarrow y_B=1\)
\(\Rightarrow OB=\left|y_B\right|=1\)
\(S=\dfrac{1}{2}OA.OB=\dfrac{1}{4}\)