Cho tam giác ABC vuông tại A, biết AB =4cm ,AC=5cm
a/Tính cạnh BC
b/Gọi M là trung điểm của cạnh BC ,trên tia đối của tia MA lấy điểm D sao cho MA=MB
Chứng minh△AMB=△DMC
GIÚP MIK VS NHA , NGÀY MAI MIK THI R ,THANK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABM\) và \(\Delta DCM\) có:
AM = DM (gt)
BM = CM (M là trung điểm BC)
\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)
\(\Rightarrow\Delta ABM=\Delta DCM\) (c-g-c)
b) Do \(\Delta ABM=\Delta DCM\) (cmt)
\(\Rightarrow AB=CD\) (hai cạnh tương ứng) và \(\widehat{ABM}=\widehat{DCM}\) (hai góc tương ứng)
\(\Rightarrow\widehat{ABC}=\widehat{DCB}\)
Xét \(\Delta ABC\) và \(\Delta DCB\) có:
AB = CD (cmt)
\(\widehat{ABC}=\widehat{DCB}\) (cmt)
BC là cạnh chung
\(\Rightarrow\Delta ABC=\Delta DCB\) (c-g-c)
\(\Rightarrow\widehat{BAC}=\widehat{BDC}\) (hai góc tương ứng)
Mà \(\widehat{BAC}=90^0\)
\(\Rightarrow\widehat{BDC}=90^0\)
Hay \(DB\perp DC\)
a,
Xét △ABC có:
BC2 = 172 = 289
AB2 + AC2 = 152 + 82 = 225 + 64 = 289
=> BC2 = AB2 + AC2
=> △ABC vuông
a) Xét ΔAMB và ΔDMC có:
\(AM=CM\) (gt)
\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)
\(BM=CM\) (M là trung điểm của BC)
\(\Rightarrow\text{Δ}AMB=\text{Δ}DMC\left(c.g.c\right)\)
b) Ta có: \(\text{Δ}AMB=\text{Δ}DMC\left(cmt\right)\)
\(\Rightarrow AB=DC\) (2 cạnh t.ứng)
c) Ta có: \(\text{Δ}AMB=\text{Δ}DMC\left(cmt\right)\)
\(\Rightarrow\widehat{MAB}=\widehat{MDC}\) (hai góc t.ứng)
Mà hai góc này ở vị trí so le trong
\(\Rightarrow AB//CD\)
a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)
BC = 10; AB = 8 (Gt)
=> AC^2 = 10^2 - 8^2
=> AC^2 = 36
=> AC = 6 do AC > 0
b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)
BM = MC do M là trung điểm của BC(gt)
^BMA = ^DMC (đối đỉnh)
=> tam giác AMB = tam giác DMC (c-g-c)
=> ^ABM = ^MCD mà 2 góc này slt
=> AB // CD
AB _|_ AC
=> CD _|_ AC
c, xét tam giác ACE có : AH _|_ AE
AH = HE
=> tam giác ACE cân tại C
d, xét tam giác BMD và tam giác CMA có L BM = MC
AM = MD
^BMD = ^CMA
=> tam giác BMD = tam giác CMA (c-g-c)
=> BD = AC
AC = CE do tam giác ACE cân tại C (câu c)
=> BD = CE
a: Xét ΔAMB và ΔDMC có
MA=MD
góc AMB=góc DMC
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
Do đó: ABDC là hình bình hành
=>BD//AC
c: Xét tứ giác ACBE có
N là trung điểm chung của AB và CE
Do đó: ACBE là hình bình hành
=>BE//AC và BE=AC
ACDB là hình bình hành
=>AC//BD và AC=BD
AC//BD
AC//BE
BD cắt BE tại B
Do đó: D,B,E thẳng hàng
mà BD=BE(=AC)
nên B là trung điểm của DE
a) \(\Delta ABC\) vuông tại A áp dụng định lý Py-ta-go ta có:
\(BC=\sqrt{AC^2+AB^2}=\sqrt{15^2-8^2}=17\left(cm\right)\)
b) Xét \(\Delta ABM\) và \(\Delta DMC\) ta có:
\(MA=MD\left(gt\right)\)
\(\widehat{BMA}=\widehat{DMC}\) (hai góc đổi đỉnh)
\(BM=MC\) (M là trung điểm của BC)
\(\Rightarrow\Delta ABM=\Delta DMC\left(c-g-c\right)\)
a: \(BC=\sqrt{4^2+5^2}=\sqrt{41}\left(cm\right)\)
b: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC