chứng minh biểu thức sau luôn âm:
\(2x-2x^2-5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-x^2+2x-3\)
\(=-\left(x^2-2x+3\right)\)
\(=-\left(x^2-2x.1+1+2\right)\)
\(=-\left[\left(x-1\right)^2+2\right]\)
Vì \(\left(x-1\right)^2+2\ge2\) với mọi x
\(\Rightarrow-\left[\left(x-1\right)^2+2\right]\le0\)
hay \(-x^2+2x-3\) luôn âm
Ta có: -x^2+2x-3
= - (x^2-2x+3)
= (x^2 - 2x.1+1+2)
= -[(x-1)^2 +2]
Do (x-1)^2 +2 > hoặc = 2 với mọi x
=> -[(x-1)^2+2]< hoặc = 0
=>-x^2+2x-3 luôn âm
Chúc học tốt !
Bài 1
\(a,\)\(49x^2-28x+7\)
\(=\left(7x\right)^2-2.7x.2+2^2+3\)
\(=\left(7x-2\right)^2+3\ge3\)( luôn dương )
Dấu bằng sảy ra khi và chỉ khi \(\left(7x-2\right)^2=0\)
\(\Rightarrow7x-2=0\)
\(\Rightarrow x=\frac{2}{7}\)
Bài 1 b
\(x^2+\frac{2}{5}x+\frac{1}{5}\)
\(=x^2+2.x.\frac{1}{5}+\frac{1}{25}+\frac{4}{25}\)
\(=\left(x+\frac{1}{5}\right)^2+\frac{4}{25}\ge\frac{4}{25}\)( luôn dương )
Dấu bằng sảy ra khi và chỉ khi \(\left(x+\frac{1}{5}\right)^2=0\)
\(\Rightarrow x+\frac{1}{5}=0\)
\(\Rightarrow x=-\frac{1}{5}\)
a) \(A=x^2+2x+3=x^2+2x+1+2\)
\(=\left(x+1\right)^2+2\ge2\)
Vậy A luôn dương với mọi x
b) \(B=-x^2+4x-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+2^2\right)-1\)
\(=-\left(x-2\right)^2-1\le-1\)
Vậy B luôn âm với mọi x
a)\(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2\)
Vậy x2 +2x+3 luôn dương.
b)\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\le-1\)
Vậy -x2 +4x-5 luôn luôn âm.
a)\(-\frac{1}{4}x^2+x-2=-\left[\left(\frac{1}{2}x\right)^2-2.\frac{1}{2}x+1+1\right]\)
\(=-1-\left(\frac{1}{2}x-1\right)^2\le-1\left(đpcm\right)\)
b)\(-3x^2-6x-9=-3\left(x^2-2x+1+2\right)\)
\(=-6-3\left(x-1\right)^2\le-6\left(đpcm\right)\)
c)\(-2x^2+3x-6=-2\left(x^2-\frac{3}{2}x+3\right)\)
\(=-2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}+\frac{39}{16}\right)\)
\(=-\frac{39}{8}-2\left(x-\frac{3}{4}\right)^2\le-\frac{39}{8}\)
d) tương tự
1/
\(M=3x^2-4x+3=3\left(x^2-\frac{4}{3}x+1\right)=3\left(x^2-2x\cdot\frac{2}{3}+\frac{4}{9}\right)+\frac{5}{3}=3\left(x-\frac{2}{3}\right)^2+\frac{5}{3}\ge\frac{5}{3}>0\)
\(N=5x^2-10x+2018=5\left(x^2-2x+1\right)+2013=5\left(x-1\right)^2+2013\ge2013>0\)
\(P=x^2+2y^2-2xy+4y+7=\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)+3=\left(x-y\right)^2+\left(y+2\right)^2+3\ge3>0\)
2/
\(A=10x-6x^2+7=-6x^2+10x+7=-6\left(x^2-\frac{10}{6}x+\frac{25}{36}\right)-\frac{11}{6}=-6\left(x-\frac{5}{6}\right)^2-\frac{11}{6}\le-\frac{11}{6}< 0\)
\(B=-3x^2+7x+10=-3\left(x^2-\frac{7}{3}x+\frac{49}{36}\right)-\frac{311}{12}=-3\left(x-\frac{7}{6}\right)^2-\frac{311}{12}\le-\frac{311}{12}< 0\)
\(C=2x-2x^2-y^2+2xy-5=\left(2x-x^2-1\right)-\left(x^2-2xy+y^2\right)-4=-\left(x^2-2x+1\right)-\left(x-y\right)^2-4=-\left(x-1\right)^2-\left(x-y\right)^2-4\)\(\le-4< 0\)
\(2x-2x^2-5\)
\(=-2\times\left(x^2-2\times x\times\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+\frac{5}{2}\right)\)
\(=-2\times\left[\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\right]\)
\(\left(x-\frac{1}{2}\right)^2\ge0\)
\(\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\ge\frac{9}{4}\)
\(-2\times\left[\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\right]\le-\frac{9}{2}< 0\)
Vậy biểu thức trên luôn âm.
ta có 2x-2x2-5=2x-(2x.2x)-5