Cho Tỉ lệ thức: a/b=c/d. CMR: ac/bd=a^2+c^2/b^2+d^2
Tính 3 cách nhoa......♥♥♥♥♥
lm đk sẽ đk like
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình cx đang kẹt câu này nè. Cùng bài luôn. Bài của tớ nè:
Bài 1: Cho tam giác ABC, kẻ BE AC và CF AB. Biết BE = CF = 8cm. độ dài các đoạn thẳng BF và BC tỉ lệ với 3 và 5.
a. Chứng minh tam giác ABC là tam giác cân
b. Tính độ dài cạnh đáy BC
c. BE và CF cắt nhao tại O. Nối OA và EF. Chứng minh đường thẳng AO là trung trực của đoạn thẳng EF.
\(A=2+2^2+2^3+...+2^{120}\)
\(2A=2^2+2^3+...+2^{121}\)
\(2A-A=\left(2^2+2^3+...+2^{121}\right)-\left(2+2^2+2^3+...+2^{120}\right)\)
\(A=2^{121}-2\)
Đặt \(\hept{\begin{cases}a=\frac{x}{y}\\b=\frac{y}{z}\\c=\frac{z}{x}\end{cases}}\) Ta có: \(A=\frac{1}{2+a}+\frac{1}{2+b}+\frac{1}{2+c}=\frac{1}{\frac{x}{y}+2}+\frac{1}{\frac{y}{z}+2}+\frac{1}{\frac{z}{x}+2}\)
\(=\frac{y}{x+2y}+\frac{z}{y+2z}+\frac{x}{z+2x}\)
Cần cm \(A\le1\Leftrightarrow2A\le2\)
\(\Leftrightarrow\frac{2y}{x+2y}+\frac{2z}{y+2z}+\frac{2x}{z+2x}\le2\)
\(\Leftrightarrow\left(1-\frac{2y}{x+2y}\right)+\left(1-\frac{2z}{y+2z}\right)+\left(1-\frac{2x}{z+2x}\right)\ge1\)
\(\Leftrightarrow\frac{x}{x+2y}+\frac{y}{y+2z}+\frac{z}{z+2x}\ge1\)
\(\Leftrightarrow\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2xz}\ge1\)
bđt này đúng theo cauchy-schwarz. dấu bằng xảy ra khi a=b=c=1
hôm nay mình thi môn cuối cùng nữa thui, chúc bạn thi tốt ha !!!
uk , cảm ơn nhé . Ngày mai mình thi học sinh giỏi rồi .
k mình nhé PÉ MY
\(\frac{a}{b}=\frac{c}{d}\)
\(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)
Ta có :
\(\frac{a}{b}=\frac{c}{d}=m\Rightarrow a=m.b;c=m.d\)
\(\Rightarrow\frac{ac}{bd}=\frac{m.b.m.d}{bd}=m.m=m^2\)
\(\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{\left(mb\right)^2+\left(md\right)^2}{b^2+d^2}=\frac{m^2\left(b^2+d^2\right)}{b^2+d^2}=m^2\)
Vì \(m^2=m^2\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)