Cho tam giác ABC .Vẽ D đối xứng vs A qua B,E đối xứng vs B qua C,F đối xứng vs C qua A.Gọi G là trung điểm giữa trung tuyến AM của tam giác ABC vs trung tuyến DN của tam giác DEF.Gọi I và K lần lượt là trung điểm của GA và GD.c/m AB song song va bang NM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.
Nối A vs N
a)xét tg CEF có: N là t/đ của EF(gt) và A là t/đ của FC (vì C đx vs F qua A) => AN là đg trung bình của tg CEF
=> AN//CE và AN =1/2. CE
=> AN=1/2.BC(vì BC = CE) => AN =BM(vì BM = 1/2. BC)
xét tg ANMB có: AN=MB (cmt) và AN//MB ( vì AN// CE ; B,M,C,E thẳng hàng) => tg ANMB là hbh=> MN//AB và AB=MN (1) ;
xét tg AGD có: I là t/đ của AG (gt) và K là t/đ của DG(gt) => IK là đg trung bình của tg AGD => IK=1/2.AD và IK //AD
Mà B là t/đ của AD (vì A đx vs D qua B) => AB=BD=1/2.AD=> IK=AB ( =1/2.AD) (2)
Từ (1),(2)=> IK=MN
Ta có: MN// AB(cmt) ; B thuộc AD => MN//AD
Xét tg MNIK có: IK=MN (cmt) và IK//MN (cùng // AD)
=> tg MNIK là hbh (đpcm)
b) Do tg MNIK là hbh ( câu a) mà G là gđ của IM và KN nên G là t/đ của IM là KN
=> IG=MG và KG=NG
Mặt khác: I là t/đ của AG(gt)=> IG=AI=> AI=IG=GM
K là t/đ của DG(gt) => Dk=KG => DK=KG=GN
xét tg ABC có: AM là đg trung tuyến (gt) và AI=IG=GM (cmt) => G là trọng tâm của tg ABC (*)
xét tg DEF có: DN là đg trung tuyến (gt) và DK=KG=GN(cmt) => G là trọng tâm của tg DEF (**)
Từ (*),(**) => G vừa là trọng tam của tg ABC vừa là trọng tâm của tg DEF
=> Tg ABC và tg DEF có cùng trọng tâm là G (đpcm)
a: Xét ΔABC có
D là trung điểm của BC
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔBAC
Suy ra: DE//AB
hay DE⊥AC
a/ Xét △ABC vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right)\)
\(\Rightarrow BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
- AM là đường trung tuyến của △ABC vuông tại A
\(\Rightarrow AM=MB=MC=\dfrac{BC}{2}\)
\(\Rightarrow AM=\dfrac{10}{2}=5\left(cm\right)\)
Vậy: \(AM=5cm\)
==========
b/ Tứ giác ABNC là hình chữ nhật vì:
- M là trung điểm của BC (gt) và AN (N đối xứng với A qua M)
⇒ ABNC là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành)
- ABNC có \(\hat{A}=90\text{°}\left(gt\right)\)
Vậy: ABNC là hình chữ nhật (Hình bình hành có một góc vuông là hình chữ nhật)
==========
c/ Ta có:
- \(IM=IK\left(gt\right);\hat{MIC}=90\text{°}\left(gt\right)\)
⇒AC là đường trung trực của MK \(\left(1\right)\)
- Mặt khác:
-Xét △CIM và △AIM có:
+ \(\hat{MIC}=\hat{MIA}=90\text{°}\left(gt\right)\)
+ \(IM\text{ }chung\)
+\(AM=MC\) (AM là trung tuyến của △ABC vuông tại A)
⇒ \(\text{△CIM = △AIM(c.h-c.g.v)}\)
\(\Rightarrow IA=IC\). Mà \(\hat{MIC}=90\text{°}\)
⇒MK là đường trung trực của AC \(\left(2\right)\)
Từ (1) và (2). Vậy: Tứ giác AMCK là hình thoi (Tứ giác có hai đường chéo là đường trung trực của nhau là hình thoi)