Cho 2 đơn thức
\(A\left(x\right)=-2x^3+11x^2-5x-\dfrac{1}{5}\)
\(B\left(x\right)=2x^3-3x^2-7x+\dfrac{1}{5}\)
a) Tính A(x) + B(x)
b) Tìm đa thức C(x) biết C(x) +B(x) = A(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}\)
\(Q\left(x\right)=4x^4+2x^3-5x^2-6x+\dfrac{3}{2}\)
b: \(A\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}+4x^4+2x^3-5x^2-6x+\dfrac{3}{2}=-x^4+2x^3-3x^2-14x+2\)
\(B\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}-4x^4-2x^3+5x^2+6x-\dfrac{3}{2}=-9x^4-2x^3+7x^2-2x-1\)
Lời giải:
a.
$A+B=(5x^2-7x+2)+(4x^2+3x-1)=9x^2-4x+1$
$A-B=(5x^2-7x+2)-(4x^2+3x-1)=x^2-10x+3$
b.
$A(x)=2x^2-x+m=x(2x-5)+4x+m=x(2x-5)+2(2x-5)+m+10$
$=B(x)(x+2)+m+10$
Để $A(x)\vdots B(x)$ thì $m+10=0\Leftrightarrow m=-10$
`a,(25xy^3(2x-y)^2)/(75xy^2(y-2x))(x,y ne 0)(y ne 2x)`
`=(25xy^3(y-2x)^2)/(75xy^2(y-2x))`
`=(y(y-2x))/3`
`b,(x^2-y^2)/(x^2-y^2+xz-yz)`
`=((x-y)(x+y))/((x-y)(x+y)+z(x-y))`
`=(x+y)/(x+y+z)`
`c,((2x+3)-x^2)/(x^2-1)(x ne +-1)`
`=(-(x^2-3x+x-3))/((x-1)(x+1))`
`=(-x(x-3)+x-3)/((x-1)(x+1))`
`=((x-3)(1-x))/((x-1)(x+1))`
`=(3-x)/(1+x)`
`d,(3x^3-7x^2+5x-1)/(2x^3-x^2-4x+3)`
`=(3x^3-3x^2-4x^2+4x+x-1)/(2x^3-2x^2+x^2-x-3x+3)`
`=(3x^2(x-1)-4x(x-1)+x-1)/(2x^2(x-1)+x(x-1)-3(x-1))`
`=(3x^2-4x+1)/(2x^2+x-3)`
`=(3x^2-3x-x+1)/(2x^2-2x+3x-3)`
`=(3x(x-1)-(x-1))/(2x(x-1)+3(x-1))`
`=(3x-1)/(2x+3)`
a) Ta có: \(\dfrac{25xy^3\cdot\left(2x-y\right)^2}{75xy^2\cdot\left(y-2x\right)}\)
\(=\dfrac{25xy^2\cdot y\cdot\left(y-2x\right)^2}{25xy\cdot y\cdot\left(y-2x\right)\cdot3}\)
\(=\dfrac{y\left(y-2x\right)}{3}\)
\(a, x^3+5x^2-9x-45=0\\ \Leftrightarrow x^2\left(x+5\right)-9\left(x+5\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\left(x\ne-5\right)\\ \text{Với }x=3\Leftrightarrow A=\dfrac{9-9}{3\left(3+5\right)}=0\\ \text{Với }x=-3\Leftrightarrow A=\dfrac{9-9}{3\left(-3+5\right)}=0\\ \text{Vậy }A=0\\ b,B=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}\\ B=\dfrac{3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
a) B(x)=\(4x^5\) -\(2x^4\) +\(3x^3\) -\(2x^2\) +\(4x\) +\(\dfrac{-1}{2}\)
b) C(x)=\(2x^4-x^3+\dfrac{1}{2}+4x\)
Bài 2:
a: \(=2x^4-x^3-10x^2-2x^3+x^2+10x=2x^3-3x^3-9x^2+10x\)
b: \(=\left(x^2-15x\right)\left(x^2-7x+3\right)\)
\(=x^4-7x^3+3x^2-15x^3+105x^2-45x\)
\(=x^4-22x^3+108x^2-45x\)
c: \(=12x^5-18x^4+30x^3-24x^2\)
d: \(=-3x^6+2.4x^5-1.2x^4+1.8x^2\)
Giải:
a) \(8\left(3x-2\right)-13x=5\left(12-3x\right)+7x\)
\(\Leftrightarrow24x-16-13x=60-15x+7x\)
\(\Leftrightarrow24x-13x+15x-7x=60+16\)
\(\Leftrightarrow19x=76\)
\(\Leftrightarrow x=\dfrac{76}{19}=4\)
Vậy ...
b) \(\dfrac{5x}{x+2}-\dfrac{3}{x-2}+\dfrac{3x^2+6}{\left(x-2\right)\left(x+2\right)}=0\) (1)
ĐKXĐ: \(x\ne\pm2\)
\(\left(1\right)\Leftrightarrow\dfrac{5x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{3x^2+6}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow5x\left(x-2\right)-3\left(x+2\right)+3x^2+6=0\)
\(\Leftrightarrow5x^2-10x-3x-6+3x^2+6=0\)
\(\Leftrightarrow8x^2-13x=0\)
\(\Leftrightarrow x\left(8x-13\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\8x-13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=\dfrac{13}{8}\left(TM\right)\end{matrix}\right.\)
Vậy ...
c) \(\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2x+2}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\) (2)
ĐKXĐ: \(x\ne-1;x\ne3\)
\(\left(2\right)\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{4x}{2\left(x+1\right)\left(x-3\right)}\)
\(\Leftrightarrow x\left(x+1\right)+x\left(x-3\right)=4x\)
\(\Leftrightarrow x\left(x+1+x-3\right)=4x\)
\(\Leftrightarrow x\left(2x-2\right)=4x\)
\(\Leftrightarrow2x-2=4\)
\(\Leftrightarrow x=3\)
Vậy ...
b: \(B=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{x^2-9}=\dfrac{3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
a: \(A\left(x\right)+B\left(x\right)\)
\(=-2x^3+11x^2-5x-\dfrac{1}{5}+2x^3-3x^2-7x+\dfrac{1}{5}\)
\(=8x^2-12x\)
b: C(x)=A(x)-B(x)
\(=-2x^3+11x^2-5x-\dfrac{1}{5}-2x^3+3x^2+7x-\dfrac{1}{5}\)
\(=-4x^3+14x^2+2x-\dfrac{2}{5}\)