tìm số tự nhiên chia cho 3,4,5 và 6 được dư lần lượt là 2,3,4,5 nhưng chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Tìm số tự nhiên nhỏ nhất khác 0 mà chia hết cho cả 2,3,4,5 và 6 là số 60
1)
SỐ ĐÓ LÀ : 2X3X4X5X6=720:6=120
2)
SỐ ĐÓ LÀ :
120+1=121
3)
SỐ ĐÓ LÀ
120-1=119
4)
SỐ LỚN LÀ
(133-19):(4-1)X4+19=171
Gọi số cần tìm là x (x thuộc N)
Vì x chia 2,3,4,5,6 lần lượt đc dư là 1,2,3,4,5
=>x+1 chia hết cho 2,3,4,5,6
=>x+1 thuộc BC(2,3,4,5,6) mà x+1 nhỏ nhất(do x nhỏ nhất)
=>x+1 là BCNN(2,3,4,5,6)=2².3.5=60
=>x=59
Vì a:4 dư 3 nên a-3⋮4=>a-3+4⋮4=>a+1⋮4(1)
Vì a:5 dư 4 nên a-4⋮5=>a-4+5⋮5=>a+1⋮5(2)
Vì a:6 dư 5 nên a-5⋮6=>a-5+6⋮6=>a+1⋮6(3)
Từ (1);(2);(3)=>a+1⋮BCNN(4;5;6)=>a+1∈BC(4;5;6)
Ta có:
4=2²
5=5
6=2.3
BCNN(4;5;6)=2².3.5=60
=>a+1∈BC(4;5;6)=B(60)={0;60;120;180;240;300;360;...}
vì a∈N* nên a+1∈N*=>a+1>0
=>a∈{59;119;179;239;299;359;...}
Vì a⋮13 mà a nhỏ nhất nên a=299
Vậy a=299
꧁༺๖ۣ๖ۣۜSkyღ๖ۣۜlạnh☯๖ۣۜlùngɠɠ༻꧂
gọi số đó là a (a\(\in\)N*)
a:4 dư 3\(\Rightarrow\)a+1 \(⋮\)4
a:5 dư 4\(\Rightarrow\)a+1\(⋮\)5
a:6 dư 5\(\Rightarrow\)a+1\(⋮\)6
a nhỏ nhất
\(\Rightarrow\) a\(\in\)BC(4,5,6)
Mà : 4=2\(^2\)
5=5
6=2\(\times\)3
BCNN(4,5,6)=2\(^2\)\(\times\)5\(\times\)3=60
BC(4,5,6)={0;60;120;180;240;300;360;420;480;...}
\(\Rightarrow\) a+1\(\in\){0;60;120;180;240;300;360;420;480;...}
\(\Rightarrow\)a\(\in\){1;61;121;181;241;301;361;421;481;...}
Vì a\(\in\)N, a chia hết cho 13
\(\Rightarrow\)a=481
sai đấy bạn ạ đừng chép vào vở
Gọi số tự nhiên đó là x.
Theo đề, ta có: Nếu thêm 1 vào x thì ta được một số tự nhiên chia hết cho 3, 4, 5, 6
BCNN (3, 4, 5, 6) = 22 . 3 . 5 = 60
x + 1 \(\in\)B(60) = {0; 60; 120; 180; 240; ...}
x \(\in\){-1; 59; 119; 179; 239; ...}
mà x chia hết cho 7 nên x = 119
Vậy số tự nhiên đó là 119.
Gọi số cần tìm là a
a:3 dư 2
a:4 dư 3
a:5 dư 4
a:6 dư 5
=>a+1 chia hết cho 3,4,5,6
=>a+1chia hết cho BCNN(3,4,5,6)
=>a+1 chia hết cho 60
=> a+1 \(\in\){0,60,120,180,240,300,360,420,....}
=>a\(\in\){-1,59,119,179,239,299,359,419,...}
vìa chia hết cho 7 nên a=119