K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

Min: A=-1 khi x= -1, y=3

4 tháng 8 2016

Ta có : \(A=5.\left(x+1\right)^2+\left(y-3\right)-1\)

 Vậy GTNN là -1

Khi x + 1 = 0

      x       = 0 - 1

      x       = -1

Khi y - 3 = 0

       y     = 0 + 3

        y    = 3

3 tháng 8 2016

ko ai jup ht

12 tháng 11 2019

a) Ta có : \(A=\left|x+1\right|+\left|y-2\right|\)

\(\ge\left|x+1+y-2\right|\)

\(=\left|x+y-1\right|=\left|5-1\right|=\left|4\right|=4\)

Dấu "=" xảy ra <=> (x + 1)(y - 2) \(\ge\)0

Vậy Min A = 4 <=>  (x + 1)(y - 2) \(\ge\)0

6 tháng 12 2016

Cách 1.

Nhận xét : \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) . Do vậy A luôn xác định. Ta có :

\(A=\frac{x^2+1}{x^2-x+1}\Leftrightarrow A\left(x^2-x+1\right)=x^2+1\Leftrightarrow x^2\left(A-1\right)-x.A+\left(A-1\right)=0\)

Tìm GTLN-GTNN tức là tồn tại giá trị x thỏa mãn minA và maxA.

Vậy thì điều kiện cần là phương trình trên có nghiệm, tức là :

\(\Delta=A^2-4.\left(A-1\right)\left(A-1\right)=A^2-4\left(A^2-2A+1\right)=-3A^2+8A-4\ge0\)

Giải bđt trên được \(\frac{2}{3}\le A\le2\)

Vậy : min A = 2/3 khi x = -1

max A = 2 khi x = 1

 

6 tháng 12 2016

Cách 2.

Theo nhận xét ở cách 1 thì ta có A luôn xác định.

Ta có : \(A=\frac{x^2+1}{x^2-x+1}=\frac{2\left(x^2-x+1\right)+\left(x^2+2x+1\right)}{3\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2}{3\left(x^2-x+1\right)}+\frac{2}{3}\ge\frac{2}{3}\)

Đẳng thức xảy ra khi x = -1

Vậy minA = 2/3 khi x = -1

\(A=\frac{x^2+1}{x^2-x+1}=\frac{2\left(x^2-x+1\right)-\left(x^2-2x+1\right)}{x^2-x+1}=-\frac{\left(x-1\right)^2}{x^2-x+1}+2\le2\)

Đẳng thức xảy ra khi x = 1

Vậy max A = 2 khi x = 1

19 tháng 8 2017

kb vs mk i rùi mk trả lời cho

19 tháng 8 2017

ĐỐ BT TUI LÀ CON TRAI HAY GIRL

\(A=5\left(x+1\right)^2+\left|y-3\right|-1\ge-1\forall x,y\)

Dấu '=' xảy ra khi x=-1 và y=3