Cho tam giác ABC có góc A=1200 , đường phân giác AD, A và F là chân đường vuông góc kẻ từ D xuống AB và AC.
a) C/m AE=AF
b) kẻ CM // AD, M thuộc AB. Tam giác ABC là tam giác gì ?
c) C/m EF vuông góc với CM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vậy ΔDEF đều
b) Vì AD là tia phân giác của ∠BAC (gt)
⇒ ∠DAB = ∠DAC = 1/2∠BAC = 60o
Vì AD//MC (gt)
⇒ ∠AMC = ∠DAB = 60o (hai góc nằm ở vị trí đồng vị)
∠AMC = ∠CAD = 60o (hai góc nằm ở vị trí so le trong)
Xét ΔAMC có:
Hai góc bằng nhau và bằng 60o
⇒ ΔAMC đều
Vậy ΔAMC đều
Còn lại bạn tự làm nhé
https://lazi.vn/edu/exercise/cho-tam-giac-abc-co-goc-a-120-do-duong-phan-giac-ad-d-thuoc-bc-ve-de-vuong-goc-voi-ab-df-vuong-goc
a) ΔAED=ΔAFDΔAED=ΔAFD(ch-gn)nên DE=DF.(hai cạnh tương ứng)
Mặt khác dễ dàng chứng minh được EDFˆ=60o
Vì vậy tam giác DEF là tam giác đều
b)ΔEDK=ΔFDT(hai cạnh góc vuông)
nen DK=DI(hai cạnh tương ứng).Do đó Tam giác DIK cân ở D
c) AD là tia phân giác của góc BAC nên DAB^=DAC^=1/2BAC^=60o
AD//MC(gt),do đó AMCˆ=DABˆ=60o(hai góc nằm trong vị trí đồng vị)
AMC^=CAD^=60o(hai góc nằm trong vị trí sole trong)
Tam giác AMC có hai góc bằng nhau và khoảng 60o nên là tam giác đều
d)Ta có AF=AC-FC=CM-FC=m-n.
a: Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{30}=\dfrac{CD}{40}\)
=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)
mà BD+CD=BC=50cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{50}{7}\)
=>\(BD=3\cdot\dfrac{50}{7}=\dfrac{150}{7}\left(cm\right);CD=4\cdot\dfrac{50}{7}=\dfrac{200}{7}\left(cm\right)\)
b: Xét tứ giác AMDN có
\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)
=>AMDN là hình chữ nhật
Hình chữ nhật AMDN có AD là phân giác của góc MAN
nên AMDN là hình vuông
a: Xét ΔABE có
AD vừa là đường cao, vừa là trung tuyến
=>ΔABE cân tại A
b: Gọi M là giao của AD và FE
Xét ΔAME có
ED,AF là đường cao
ED cắt AF tại C
=>C là trực tâm
=>M,C,K thẳng hàng
=>ĐPCM
a: Xet ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
góc BAD=góc EAD
=>ΔABD=ΔAED
=>AB=AE và DB=DE
=>AD là trung trực của BE
b: Xét ΔAEF vuông tại E và ΔABC vuông tại B có
AE=AB
góc EAF chung
=>ΔAEF=ΔABC
=>AF=AC
Xet ΔADF và ΔADC có
AD chung
góc DAF=góc DAC
AF=AC
=>ΔADF=ΔADC
c: ΔCBF vuông tại B
mà BM là trung tuyến
nên MB=MF
a) \(\Delta ADE=\Delta ADF\) (cạnh huyền - góc nhọn) \(\Rightarrow\)\(AE=AF\)và góc ADE = góc ADF, DE = DF.
b) Do CM // AD nên \(\Delta BAD\) đồng dạng \(\Delta BMC\)(hệ quả định lý Ta-lét) \(\Rightarrow\)\(\frac{BD}{CD}=\frac{AB}{AM}\)
Mà \(\frac{BD}{CD}=\frac{AB}{AC}\)(AD là phân giác) \(\Rightarrow\) \(\frac{AB}{AC}=\frac{AB}{AM}\)\(\Rightarrow\)AC = AM nên \(\Delta ACM\)cân tại A.
\(\Delta ACM\)cân tại A có góc MAC = 1800 - góc BAC = 1800 - 1200 = 600 nên \(\Delta ACM\)đều.
c) Gọi O là giao điểm EF và AD.
\(\Delta ODE\) và \(\Delta ODF\) có: cạnh OD chung, góc ADE = góc ADF và DE = DF \(\Rightarrow\)\(\Delta ODE=\Delta ODF\)(c-g-c)
\(\Rightarrow\)góc \(EOD=FOD=90^0\)\(\Rightarrow\)AD vuông góc EF mà CM // AD \(\Rightarrow\)EF vuông góc CM.
Mình nghĩ đề đúng phải là:
Cho tam giác ABC có góc A = 1200 , đường phân giác AD, E và F là chân đường vuông góc kẻ từ D xuống AB và AC.
a) Chứng minh: AE=AF
b) kẻ CM // AD, M thuộc AB. Tam giác AMC là tam giác gì ?
c) Chứng minh: EF vuông góc với CM