Cho biểu thức A=1+9+92+93+....+910
tìm chữ số tận cùng của số 16.a
- so sánh A với P=9102 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = 1 + 9 + 92 + 93 + ... + 9101
9A = 9 + 92 + 93 + ... + 9102
9A - A = (9 + 92 + 93 + ... + 9102) - (1 + 9 + 92 + 93 + ... + 9101)
8A = 9 + 92 + 93 + ... + 9102 - 1 - 9 - 92 - 93 - ... - 9101
8A = 9102 - 1
A = \(\frac{9^{102}-1}{8}\)
A = \(\frac{9^{102}}{8}-\frac{1}{8}\)(1)
P = \(\frac{9^{102}}{8}\)(2)
Từ (1) và (2) => A < P
b) 9102
Ta nhóm 2 chữ số 9 vào 1 nhóm, mỗi nhóm có chữ số tận cùng là :
9 x 9 = 81 => chữ số tận cùng là 1
Ta có :
102 : 2 = 51 (nhóm)
Có 51 nhóm có chữ số tận cùng = 1 => 9102 có chữ số tận cùng là 1
Ta có : 9102 - 1 = (...1) - 1 = (...0)
(...0) : 8 = (...0)
16.A
= 16 x (...0)
= (...0)
Vậy chữ số tận cùng của 16.A là 0
Đáp số : a) A < P
b) chữ số tận cùng là 0
Đây là dạng toán nâng cao chuyên đề chữ số tận cúng của lũy thừa. Cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay Olm sẽ hướng dẫn các em làm dạng này như sau:
\(A=19^{5^{1^{8^{9^0}}}}\) + \(2^{9^{1^{9^{6^9}}}}\)
+ Ta có: 5 \(\equiv\) 1 (mod 2) ⇒ \(5^{1^{8^{9^0}}}\) \(\equiv\) \(1^{1^{8^{9^0}}}\) (mod 2)
⇒ \(5^{1^{8^{9^0}}}\) \(\equiv\) 1 (mod2)
Vậy đặt \(5^{1^{8^{9^0}}}\) = 2k + 1 khi đó
\(19^{5^{1^{8^{9^0}}}}\) = \(19^{2k+1}\) = (192)k.19 = (\(\overline{..1}\))k.19 = \(\overline{..1}^{ }.19\)= \(\overline{..9}\) (1)
+ Mặt khác: 9 \(\equiv\) 1 (mod 4) ⇒ \(^{9^{1^{9^{6^9}}}}\) \(\equiv\) \(^{1^{1^{9^{6^9}}}}\) (mod 4)
⇒ \(^{9^{1^{9^{6^9}}}}\) \(\equiv\) 1 (mod 4)
Vậy đặt \(^{9^{1^{9^{6^9}}}}\) = 4k + 1 khi đó
\(2^{9^{1^{9^{6^9}}}}\) = 24k+1 = (24)k.2 = (\(\overline{..6}\))k.2 = \(\overline{..6}\).2 = \(\overline{..2}\) (2)
Kết hợp (1) và (2) ta có:
A = \(\overline{..9}\) + \(\overline{..2}\) = \(\overline{..1}\)
x-y = 3 =>x=3+y
=>\(B=\left|3+y-6\right|+\left|y+1\right|=\left|y-3\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)
Áp dụng BĐT chứa dấu giá trị tuyệt đối:
\(B=\left|3-y\right|+\left|y+1\right|\ge\left|3-y+y+1\right|=4\)
Dấu "=" xảy ra khi: \(\left(3-y\right)\left(y+1\right)\ge0\)
=>3-y\(\ge\)0 và y+1\(\ge\)0 hoặc 3-y\(\le\)0 và y+1\(\le\)0
=>\(-1\le y\le3\)
Vậy GTNN của B là 4 tại \(-1\le y\le3\) và x-y=3
B1: \(A=19^{5^{1^{8^{9^0}}}}+2^{9^{1^{9^{6^9}}}}=19^{5^1}+2^{9^1}=19^5+2^9=\overline{....9}+512=\overline{....1}\)
Vậy chữ số tận cùng của A là 1
\(A=1+9^1+9^2+....+9^{10}\)
\(\Rightarrow9A=9+9^2+....+9^{11}\)
\(\Rightarrow9A-A=8A=9^{11}-1\)