a) Chứng minh tổng của 4 số tự nhiên liên tiếp không chia hết cho 4.
b) Chứng minh nếu 2 số có cùng số dư khi chia cho 7 thì hiệu của chúng chia hết cho 7.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) Gọi số dư của hai số đó là N ( N khác 0 ; N nhỏ hơn 7 )
Gọi 2 số đó là 7A và 7B ( A , B khác 0 ; A>B )
Ta có : ( 7A + N ) : 7 ( dư N )
( 7B + N ) : 7 ( dư N )
=> ( 7A + N ) - ( 7B + N )
= 7A - 7B
= 7 . ( A - B ) chia hết cho 7
Vậy 2 số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7 .
B) Theo đề ta có : 3 chỉ có 2 số dư là 1 hoặc 2
Gọi 2 số đó là 3k+1 và 3h+2
Ta có : 3k+1 : 3 ( dư 1 )
3h+2 : 3 ( dư 2 )
=> ( 3k+1 ) + ( 3h+2 )
= 3k+ 3h + 3
= 3 . ( k + h + 1 )
Vậy 2 số không chia hết cho 3 mà có số dư khác nhau thì tổng của chúng chia hết cho 3
Đọc thì nhớ tk nhá
a, Gọi 2 số đó là a,b
Gia sử a,b cùng chia 3 dư r
=> a=3k+r ; b=3q+r ( k;q thuộc N )
=> a-b = 3k+r - (3q+r) = 3k-3q = 3.(k-q) chia hết cho 3
b, Áp dụng nguyên lí điricle thì trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2
=> tích của chúng chia hết cho 2
Tk mk nha
1. a chia het cho 20 va 12 suy ra a chia het cho 2;3;4;5.
vi 2
2 . 3 =6; 2 .4 =8
suy ra a chia 20 ko the du 8
a chia 12 ko the du 6
2.
=4a - 4b + 7b
=4 . [a - b] + 7b
a - b chia het cho 7 ; 7b chia het cho 7 suy ra 4a + 3b chia het cho 7
3.
a 3n - 3 + chia het n -1
3[n - 1] + 7 chia het n - 1
vi 3[n - 1]chia het chgo 7 suy ra 7 chia het n -1
vay n = 8
a) Gọi 4 số tự nhiên liên tiếp là: a; a + 1; a + 2; a + 3
Tổng của 4 số trên là: a + (a + 1) + (a + 2) + (a + 3)
= a + a + 1 + a + 2 + a + 3
= 4a + 6 không chia hết cho 4 (chia 4 dư 2) (đpcm)
b) Gọi 2 số có cùng dư trong phép chia cho 7 là a và b
=> a = 7.m + d; b = 7.n + d (d là số dư; d khác 0)
Ta có: a - b = (7.m + d) - (7.n + d)
= 7.m + d - 7.n - d
= 7.m - 7.n
= 7.(m - n) chia hết cho 7 (đpcm)