tìm ƯCLN( 8, 9); UCLN(8,12,15); UCLN( 24,16,8)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Tìm ƯCLN(8; 9)
+ Phân tích thành thừa số nguyên tố:
8 = 23
9 = 32.
+ 8 và 9 không có thừa số nguyên tố chung
+ Vậy ƯCLN(8; 9) = 1.
* Tìm ƯCLN(8; 12; 15).
+ Phân tích thành thừa số nguyên tố:
8 = 23
12 = 22.3
15 = 3.5
+ Nhận thấy 8; 12; 15 không có thừa số nguyên tố chung
Vậy ƯCLN(8; 12; 15) = 1
* Tìm ƯCLN(24; 16; 8)
+ Phân tích thành thừa số nguyên tố:
24 = 23.3
16 = 24
8 = 23
+ Thừa số nguyên tố chung là 2 (Số mũ nhỏ nhất của 2 là 23).
Vậy ƯCLN(24; 16; 8) = 23 = 8.
e) \(24=2^3.3\)
\(84=2^2.3.7\)
\(180=2^2.3^2.5\)
\(\RightarrowƯCLN\left(24;84;180\right)=2^2.3=12\)
b) \(24=2^2.3\)
\(36=2^2.3^2\)
\(\RightarrowƯCLN\left(24;36\right)=2^2.3=12\)
g) \(56=2^3.7\)
\(140=2^2.5.7\)
\(\RightarrowƯCLN\left(56;140\right)=2^2.7=28\)
h) \(12=2^2.3\)
\(14=2.7\)
\(8=2^3\)
\(20=2^2.5\)
\(\RightarrowƯCLN\left(12;14;8;20\right)=2\)
d) \(6=2.3\)
\(8=2^3\)
\(18=2.3^2\)
\(\RightarrowƯCLN\left(6;8;18\right)=2\)
k) \(7=7\)
\(9=3^2\)
\(12=2^2.3\)
\(21=3.7\)
\(\RightarrowƯCLN\left(7;9;12;21\right)=1\)
a)ƯCLN(8, 9) = 8 = 1
b)ƯCLN(60, 180) = 60
c)ƯCLN(30, 45) = 5
d)ƯCLN(120,144) = 24
bài 2 :
a)24,84,180. là : 12
b)16,80,176. là : 16
c)8, 12, 15. là : 1
d) 24, 16, 8 là : 8
bài 3 : phân số nào mà rút
ta có \(UCLN\left(a,b\right)\le a,b\)\(\Rightarrow UCLN\left(a,b\right)\le a+b\) điều này mâu thuẫn với giả thiết
\(\hept{\begin{cases}a+b=8\\UCLN\left(a,b\right)=9\end{cases}}\) vậy không tồn tại hai số a,b thỏa mãn
b. ta có \(UCLN\left(a,b\right)=6\Rightarrow\hept{\begin{cases}a=6k\\b=6h\end{cases}}\)với h,k nguyên tố cùng nhau
\(a.b=36h.k=720\Leftrightarrow hk=20=1.2^2.5\) nên \(\left(h,k\right)=\left(1,20\right)\text{ hoặc (4,5)}\)
vậy tương ứng ta có hai bộ số là 6,120 và 24,30 thỏa mãn đề bài
ƯCLN(8;9)=1
ƯCLN(8;12;15)=1
ƯCLN(24;16;8)=8
ƯCLN (8,9)=1.
ƯCLN (8,12,15)=1.
ƯCLN (24,16,8)=1