K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2020

Áp dụng bất đẳng thức Bunyakovsky, ta được: \(\Sigma_{cyc}\frac{ab}{a^2+bc+ca}=\Sigma_{cyc}\frac{ab\left(b^2+bc+ca\right)}{\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)}\le\Sigma_{cyc}\frac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)

Ta có: \(\Sigma_{cyc}\frac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}=\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}=\frac{ab^3+bc^3+ca^3+2.a\sqrt{ab}.c\sqrt{ab}+2.a\sqrt{bc}.b\sqrt{bc}+2.c\sqrt{ca}.b\sqrt{ca}}{\left(ab+bc+ca\right)^2}\le\frac{ab^3+bc^3+ca^3+a^3b+abc^2+a^2bc+b^3c+c^3a+ab^2c}{\left(ab+bc+ca\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{\left(ab+bc+ca\right)^2}=\frac{a^2+b^2+c^2}{ab+bc+ca}\)

Đẳng thức xảy ra khi a = b = c

NV
14 tháng 5 2020

Áp dụng BĐT Bunhiacopxki:

\(\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)\ge\left(ab+bc+ca\right)^2\)

\(\Rightarrow\frac{ab}{a^2+bc+ca}\le\frac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)

Tương tự: \(\frac{bc}{b^2+ca+ab}\le\frac{bc\left(c^2+ca+ab\right)}{\left(ab+bc+ca\right)^2}\) ; \(\frac{ac}{c^2+ab+bc}\le\frac{ac\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)

Cộng vế với vế:

\(VT\le\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}\)

\(VT\le\frac{ab^3+bc^3+ca^3+2.a\sqrt{ab}.c\sqrt{ab}+2a\sqrt{bc}.b\sqrt{bc}+2c\sqrt{ac}.b\sqrt{ac}}{\left(ab+bc+ca\right)^2}\)

\(VT\le\frac{ab^3+bc^3+ca^3+a^3b+abc^2+b^3c+a^2bc+ac^3+ab^2c}{\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}{\left(ab+bc+ca\right)^2}\)

\(VT\le\frac{a^2+b^2+c^2}{ab+bc+ca}\)

Dấu "=" xảy ra khi \(a=b=c\)

15 tháng 9 2019

Ta có \(\frac{a.1-bc}{a.1+bc}==\frac{a^2+ac}{a^2+ab+bc+ca}=\frac{a}{a+b}\)

Từ đó \(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

\(=-\left(\frac{a}{c-1}+\frac{b}{a-1}+\frac{c}{b-1}\right)=-\left(\frac{a^2}{ca-a}+\frac{b^2}{ab-b}+\frac{c^2}{bc-c}\right)\)

\(\le-\frac{\left(a+b+c\right)^2}{ab+bc+ca-\left(a+b+c\right)}=-\frac{1}{ab+bc+ca-1}\le-\frac{1}{\frac{\left(a+b+c\right)^2}{3}-1}=\frac{3}{2}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}.\)

\(A=\frac{a^2}{a+bc}+\frac{b^2}{b+ca}+\frac{c^2}{c+ab}=\frac{a^3}{a^2+abc}+\frac{b^3}{b^2+abc}+\frac{c^3}{c^2+abc}\)

\(=\frac{a^3}{a^2+ab+bc+ca}+\frac{b^3}{b^2+ab+bc+ca}+\frac{c^3}{c^2+ab+bc+ca}\)

\(=\frac{a^3}{\left(a+b\right)\left(c+a\right)}+\frac{b^3}{\left(b+c\right)\left(a+b\right)}+\frac{c^3}{\left(c+a\right)\left(b+c\right)}\)

đến đây áp dụng cô si 3 số là đc

NV
6 tháng 6 2020

\(VT=\frac{\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}+\frac{8\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}\)

\(VT\ge2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)\left(a+b+c\right)^2}}+\frac{24\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)}=\frac{10}{3}\)

Dấu "=" xảy ra khi \(a=b=c\)

16 tháng 5 2019

1 ) (a+b+c)^2 >= 3(ab+bc+ac)

<=> a^2 + b^2 + c^2 >= ab + bc + ac

<=> 2a^2 + 2b^2 + 2c^2 >= 2ab + 2bc + 2ac

<=> a^2 - 2ab + b^2 + b^2 - 2bc + c^2 + a^2 - 2ac + c^2 >= 0 

<=> (a - b)^2 + (b-c)^2 + (a-c)^2 >= 0 

( luôn đúng với mọi a ; b ; c )

( đpcm )

2 ) P =  \(\frac{\left(a+b+c\right)^2}{ab+bc+ac}+\frac{ab+bc+ac}{\left(a+b+c\right)^2}=\frac{\left(a+b+c\right)^2}{9\left(ab+bc+ac\right)}+\frac{ab+bc+ac}{\left(a+b+c\right)^2}+\frac{8\left(a+b+c\right)^2}{9\left(ab+bc+ac\right)}\)

AD BĐT Cô - si và BĐT phụ đã cmt ở trên  ta có : \(P\ge2.\frac{1}{3}+\frac{8.3.\left(ab+bc+ac\right)}{9\left(ab+bc+ac\right)}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)

Dấu " = " xảy ra <=> a = b = c 

16 tháng 5 2019

Khôi Bùi : theo e ý 2 có thể đơn giản hóa vấn đề bằng cách đặt ẩn phụ

đặt \(\frac{\left(a+b+c\right)^2}{ab+bc+ca}=t\left(t\ge3\right)\)

\(\Rightarrow P=t+\frac{1}{t}=\frac{t}{9}+\frac{1}{t}+\frac{8}{9}t\)

Áp dụng BĐT AM-GM ta có:

\(P\ge2.\sqrt{\frac{t}{9}.\frac{1}{t}}+\frac{8}{9}t\ge\frac{2.1}{3}+\frac{8}{9}.3=\frac{10}{3}\)

Dấu " = " xảy ra <=> a=b

12 tháng 3 2017

Ta có:

\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}\)

Mà: \(\left\{\begin{matrix}\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{10a+b+10b+c}{a+b}=9a+10b+c\\\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{10b+c+10c+a}{b+c}=9b+10c+a\\\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{10c+a+10a+b}{c+a}=9c+10a+b\end{matrix}\right.\)

\(\Rightarrow9a+10b+c=9b+10c+a=9c+10a+b\)

\(\Rightarrow\left\{\begin{matrix}9a=9b=9c\\10b=10c=10a\\c=a=b\end{matrix}\right.\)\(\Rightarrow a=b=c\)

Vậy \(a=b=c\) (Đpcm)