cho tam giác abc vuông tại a có ab=6cm ac=8cm
a)tính độ dài cạnh BC và chu vi tam giác ABC
b)đường phân giác góc B cắt AC tại D.Vẽ DH vuông góc BC chứng minh tam giác ABD=TAM GIÁC HBD
c)chứng minh DA nhỏ hơn DC
d)chứng minh AB^2-DC^2=BD^2-HC^2 đang cần gấp ạ mai kiểm tra
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
Chu vi của tam giác ABC là:
\(C_{ABC}=AB+AC+BC=6+8+10=24\left(cm\right)\)
b) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)