cho Q=3xy(x+3y)-2xy(x+4y)-x^2(y-1)+y^2(1-x)+36
a.Rút gọn
b.tìm cặp số (x,y) để Q đặt GTNN và GTNN đó
làm ơn giúp mình . chỉ cần con b thôi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=3xy\left(x+3y\right)-2xy\left(x+4y\right)-x^2\left(y-1\right)+y^2\left(1-x\right)+36\)
\(=3x^2y+9xy^2-2x^2y-8xy^2-x^2y+x^2+y^2-xy^2+36\)
\(=x^2+y^2+36\)
Ta có: \(\left\{{}\begin{matrix}x^2\ge0\\y^2\ge0\end{matrix}\right.\Leftrightarrow x^2+y^2\ge0\)
\(\Leftrightarrow B=x^2+y^2+36\ge36\)
Dấu " = " khi \(\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow x=y=0\)
Vậy \(MIN_B=36\) khi x = y = 0
\(B=3xy\left(x+3y\right)-2xy\left(x+4y\right)-x^2\left(y-1\right)+y^2\left(1-x\right)+36\)
\(B=3x^2y+9xy^2-2x^2y-8xy^2-x^2y+x^2+y^2-xy^2+36\)
\(B=x^2+y^2+36\ge36\)
Vậy \(Bmin=36\Leftrightarrow x=y=0\)
Nhờ các bạn giúp. Mình cần gấp. Cảm ơn!
Bài 1; Cho biểu thức: B= (x2 +1)(y2 + 1) - (x+4)(x-4) - (y-5)(y+5)
a) CMR: B 42 với mọi giá trị của x và y
b) Tìm x và y để B= 42
Giải:
a) B = (x2 +1)(y2 + 1) - (x+4)(x-4) - (y-5)(y+5)
B = \(x^2y^2+x^2+y^2+1-x^2+16-y^2+25\)
B = \(x^2y^2+42\ge42\) với mọi x , y
b) Để B = 42 \(\Rightarrow\) x2y2 + 42 = 0 \(\Rightarrow\) x2y2 = 0 \(\Rightarrow\) x = y = 0
Bài 2:
a) Tìm GTNN của A= (x- 1)(x+ 2)(x+ 3)(x+6)
b) Tìm GTNN cuả B= 3xy(x+ 3y) - 2xy(x+4y) - x2(y-1) + y2(1-x) + 36
Giải:
a) A = (x-1)(x+2)(x+3)(x+6)
A = (x2 + 5x - 6)(x2 + 5x + 6)
A = ( x2 + 5x )2 - 36 \(\ge\) -36 với mọi x
Dấu " = " xảy ra khi x2 + 5x = 0
x ( x + 5 ) = 0
\(\Rightarrow\) \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
MinA = -36 khi và chỉ khi x = 0 hoặc x = -5
b) Chịu :))
Bài 1:
a) \(\left(x^2+1\right)\left(y^2+1\right)-\left(x+4\right)\left(x-4\right)-\left(y-5\right)\left(y+5\right)\)
\(=x^2y^2+x^2+y^2+1-x^2+16-y^2+25\)
\(=x^2y^2+42\ge42\forall x\) (đpcm)
b) Để B = 42 thì \(x^2y^2+42=42\)
\(\Leftrightarrow x^2y^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
a, (3 - \(x\))(4y + 1) = 20
Ư(20) = { -20; -10; -5; -4; -2; -1; 1; 2; 4; 5; 10; 20}
Lập bảng ta có:
\(3-x\) | -20 | -10 | -5 | -4 | -2 | -1 | 1 | 2 | 4 | 5 | 10 | 20 |
\(x\) | 23 | 13 | 8 | 7 | 5 | 4 | 2 | 1 | -1 | -2 | -7 | -17 |
4\(y\) + 1 | -1 | -2 | -4 | -5 | -10 | -20 | 20 | 10 | 5 | 4 | 2 | 1 |
\(y\) | -1/2 | -3/4 | -5/4 | -6/4 | -11/4 | -21/4 | 19/4 | 9/4 | 1 | 3/4 | 1/4 | 0 |
Vậy các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) =(-1; 1); (-17; 0)
b, \(x\left(y+2\right)\)+ 2\(y\) = 6
\(x\) = \(\dfrac{6-2y}{y+2}\)
\(x\in\) Z ⇔ 6 - \(2y⋮\) \(y\) + 2 ⇒-(2y + 4) +10 ⋮ \(y\) + 2 ⇒ -2(\(y\)+2) +10 ⋮ \(y\)+2
⇒ 10 ⋮ \(y\) + 2
Ư(10) = { -10; -5; -2; -1; 1; 2; 5; 10}
Lập bảng ta có:
\(y+2\) | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
\(y\) | -12 | -7 | -4 | -3 | -1 | 0 | 3 | 8 |
\(x=\) \(\dfrac{6-2y}{y+2}\) | -3 | -4 | -7 | -12 | 8 | 3 | 0 | -1 |
Theo bảng trên ta có các cặp \(x;y\)
nguyên thỏa mãn đề bài lần lượt là:
(\(x;y\) ) =(-3; -12); (-4; -7); (-12; -3); (8; -1); (3; 0); (0;3 (-1; 8)
Ta có: x2+2xy+4x+4y+3y2+3=0
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(4x+4y\right)+2y^2+3=0\)
\(\Leftrightarrow[\left(x+y\right)^2+4\left(x+y\right)+4]+2y^2=1\)
\(\Leftrightarrow\left(x+y+2\right)^2=1-2y^2\)
Do \(y^2\ge0\Rightarrow1-2y^2\le1\)
\(\Rightarrow B^2=\left(x+y+2\right)^2\le1\)
\(\Rightarrow\left\{{}\begin{matrix}B\le1\\B\ge-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}B_{max}=1\\B_{min}=-1\end{matrix}\right.\)
\(x^2+2xy+4x+4x+3y^2+3=0\\ \Leftrightarrow\left(x+y\right)^2+2.\left(x+y\right).2+4=1-2y^2\\ \Leftrightarrow\left(x+y+2\right)^2=1-2y^2\le1\\ \Rightarrow\left(x+y+2\right)^2\le1\)
\(\Rightarrow-1\le x+y+2\le1\\ \)