Cho tam giác ABC vuông góc tại A có góc B = 53 độ a) Tính C b) trên BC, lấy điểm D sao cho BD = BA. Tia phân giác của góc B cắt Cạnh AC ở điểm E. chứng minh: tam giác BEA = tam giác BED c) Qua C, vẽ đường thẳng vuông góc với BE tại H. CH cắt đường thẳng AB tại . CMR : tam giác BHF = tam giác BHC d) chứng minh tam giác BAC = tam giác BDF và D,E,F thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{C}=30^0\)
\(\widehat{ABI}=\widehat{CBI}=30^0\)
b: Xét ΔBAI và ΔBDI có
BA=BD
\(\widehat{ABI}=\widehat{DBI}\)
BI chung
Do đó: ΔBAI=ΔBDI
Suy ra: \(\widehat{BAI}=\widehat{BDI}=90^0\)
hay DI⊥BC
c: Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)
nên ΔIBC cân tại I
mà ID là đường cao
nên D là trung điểm của BC
d: Xét ΔAIK vuông tại A và ΔDIC vuông tại D có
IA=ID
\(\widehat{AIK}=\widehat{DIC}\)
Do đó: ΔAIK=ΔDIC
Suy ra: IK=IC
hay ΔIKC cân tại I
e: Xét ΔBKC có BA/AK=BD/DC
nên AD//KC
a: \(\widehat{C}=90^0-60^0=30^0\)
b: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
Suy ra: \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE⊥CB
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{C}+35^0=90^0\)
hay \(\widehat{C}=55^0\)
Vậy: \(\widehat{C}=55^0\)
b) Xét ΔBEA và ΔBED có
BA=BD(gt)
\(\widehat{ABE}=\widehat{DBE}\)(BE là tia phân giác của \(\widehat{ABD}\))
BE chung
Do đó: ΔBEA=ΔBED(c-g-c)
c) Xét ΔBHF vuông tại H và ΔBHC vuông tại H có
BH chung
\(\widehat{FBH}=\widehat{CBH}\)(BH là tia phân giác của \(\widehat{FBC}\))
Do đó: ΔBHF=ΔBHC(Cạnh góc vuông-góc nhọn kề)
a, BA = BD (gt)
=> Δ ABD cân tại B (đn)
góc ABC = 60 (gt)
=> Δ ABD đều (dấu hiệu)
b) Ta có\(\widehat{A}\)=90 độ và\(\widehat{B}\)=60 độ =>\(\widehat{C}\)=30 độ (1)
Mà BI là phân giác của \(\widehat{B}\)=> \(\widehat{IBC}\)=30 độ(2)
từ (1) và (2) => Δ IBC cân tại I
c) xét 2 tam giác BIA và BID có: \(\widehat{A}\)+\(\widehat{AIB}\)+\(\widehat{IBA}\)+\(\widehat{IBD}\)+\(\widehat{BDI}\)+\(\widehat{DIB}\)=360 độ
=> \(\widehat{AID}\)=120 độ
=> \(\widehat{DIC}\)=60 độ
Xét Δ BIA và Δ CID có:
DI=AI (Δ BIA=Δ BID)
\(\widehat{BIA}\)=\(\widehat{DIC}\)=60 độ
IB=IC(vìΔ IBC cân)
=>ΔBIA=Δ CID(c.g.c)
=> BA=CD mà BA=BD=> BD=DC
=> D là trung điểm của BC
d) vì AB=\(\dfrac{1}{2}\) BC nên BC=12 cm
Áp dụng định lí py-ta-go ta có:
BC2=AB2+AC2
=> AC2=BC2−AB2
=> AC2=144 - 36=108 cm
=> AC= \(\sqrt{108}\)(cm)
vậy BC=12 cm; AC= \(\sqrt{108}\)cm
a) Xét tam giác AHB và tam giác DBH có:
AH=BD (giả thiết)
Góc AHB=góc DBH (=90o)
BH là cạnh chung
=> Tam giác AHB = tam giác DBH (c.g.c)
b) Theo chứng minh phần a: Tam giác AHB = tam giác DBH => Góc ABH = góc BHD (2 góc tương ứng)
Mà góc ABH và góc BHD là 2 góc so le trong => AB//DH
c) Tam giác ABH có: \(\widehat{BAH}+\widehat{AHB}+\widehat{ABH}=180^o\) (tổng 3 góc trong tam giác)
=>\(35^o+90^o+\widehat{ABH}=180^o\Rightarrow\widehat{ABH}=180^o-35^o-90^o=55^o\)
Tam giác ABC có: \(\widehat{BAC}+\widehat{ACB}+\widehat{ABC}=180^o\)(tổng 3 góc trong tam giác)
=>\(90^o+\widehat{ACB}+55^o=180^o\Rightarrow\widehat{ACB}=180^o-90^o-55^o=35^o\)
a: góc C=90-53=37 độ
b: Xét ΔBAE và ΔBDE có
BA=BD
góc ABE=góc DBE
BE chung
=>ΔBAE=ΔBDE
c: Xét ΔBHF vuông tại H và ΔBHC vuông tại H có
BH chung
góc HBF=góc hBC
=>ΔBHF=ΔBHC
d: Xét ΔBAC và ΔBDF có
BA=BD
góc ABC chung
BC=BF
=>ΔBAC=ΔBDF