K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2022

a, Xét tam giác ABC cân tại A có AM là trung tuyến 

=> AM đồng thời là đường cao => AM vuông BC 

b, Ta có BM = BC/2 = 3/2 cm 

Theo định lí Pytago tam giác AMB vuông tại M

\(AM=\sqrt{AB^2-BM^2}=\dfrac{\sqrt{91}}{2}cm\)

7 tháng 4 2017

Mình xin làm bài 2 thôi.

Bài 2:

B C A M

a/ Ta có tam giác ABC cân tại A => AM vừa là trung tuyến vừa là đường cao

=> AM \(⊥\)BC

b/ Ta có M là trung điểm BC => BM = CM = 1/2 BC = 1/2 x 3 = 1,5 (cm)

Xét tam giác ABM vuông tại M có: 

\(AM^2+BM^2=AB^2\left(pytago\right)\)

\(AM^2+1,5^2=5^2\)

\(AM^2+2,25=25\)

\(AM^2=22,75\Rightarrow AM=\sqrt{22,75}\approx4,8\left(cm\right)\)

PS: Câu b bạn dùng pytago với tam giác bên kia cũng dc nha

7 tháng 4 2017

Bài 2 bạn kia giải đúng rồi nên mình làm bài 1 thôi nhé

A B C D E K Ta có CB là đường trung tuyến của tam giác ACD Vì BE = 1/3 BC Nên E là trọng tâm tam giác ADC Nên AK là đường trung tuyến tam giác ADC => DK = KC

3 tháng 5 2023

rep

3 tháng 3 2022

a.Ta có: AB=AC ( gt )

=> Tam giác ABC cân tại A

Mà AM là đường trung tuyến => AM cũng là đường cao

=> AM vuông góc với BC

b. Ta có: BH = BC : 2 ( AM là đường trung tuyến )

=> BH = 32 : 2 = 16cm

Áp dụng định lý pitago vào tam giác vuông ABM, có:

\(AB^2=AM^2+BM^2\)

\(\Rightarrow AM=\sqrt{AB^2-BM^2}=\sqrt{34^2-16^2}=\sqrt{900}=30cm\)

c.Xét tam giác vuông BMF và tam giác vuông CME, có:

góc B = góc C ( ABC cân )

BM = CM ( gt )

Vậy tam giác vuông BMF = tam giác vuông CME ( cạnh huyền. góc nhọn)

=>  BF = CE ( 2 cạnh tương ứng )

=> AF = AE ( AB = AC; BF = CE )

=> Tam giác AEF cân tại A

=> AM vuông với EF (1)

Mà AM cũng vuông với BC (2)

Từ (1) và (2) suy ra EF//BC

d. ta có: BM = CM ( gt ) (3)

Mà trong tam giác vuông MCE có ME là cạnh huyền 

=> \(ME>MC\) (4)

Từ (3) và (4) suy ra \(ME>MB\)

a: Ta có:ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

b: BM=CM=BC/2=16cm

=>AM=30(cm)

c: Xét ΔAFM vuông tại F và ΔAEM vuông tại E có

AM chung

\(\widehat{FAM}=\widehat{EAM}\)

Do đó: ΔAFM=ΔAEM

Suy ra: AF=AE

Xét ΔABC có AF/AB=AE/AC

nên FE//BC

20 tháng 4 2022

a.Ta có: AM là đường trung tuyến trong tam giác cân ABC 

=> Cũng là đường cao

=> AM vuông góc với BC

b.Có AM là đường trung tuyến \(\Rightarrow BM=BC:2=32:2=16cm\)

Áp dụng định lý pytago vào tam giác vuông ABM, có:

\(AB^2=AM^2+BM^2\)

\(\Rightarrow AM^2=34^2-16^2\)

\(AM=\sqrt{900}=30cm\)

 

20 tháng 4 2022
4 tháng 3 2017

Đề thiếu yêu cầu hay là thừa dữ kiện? Thực sự cm \(AM⊥BC\)không cần đến độ dài cạnh. Cần \(\Delta\)cân và 1 đường (ở đây là trung tuyến) là đủ!

(Bạn tự vẽ hình nhé!)

Ta có: \(\Delta ABC\)cân tại \(A\Rightarrow AM\)vừa là trung tuyến vừa là đường cao \(\Rightarrow AM⊥BC\)