1 tính :
a)\(\frac{2^{11}\times9^2}{3^5\times16^2}\); b) \(\frac{9^3\times27^2}{6^2\times3^{10}}\); c) \(\frac{27^{15}\times5^3\times8^4}{25^2\times81^{11}\times2^{11}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3A=\frac{6}{3\times\left(3+6\right)}+\frac{15}{9\times\left(9+15\right)}+...+\frac{39}{84\times\left(84+39\right)}\)
\(=\frac{1}{3}-\frac{1}{9}+\frac{1}{9}-\frac{1}{24}+...+\frac{1}{84}-\frac{1}{123}=\frac{1}{3}-\frac{1}{123}=\frac{40}{123}\)
\(\Rightarrow A=\frac{40}{3.123}=\frac{40}{369}\)
\(A=\frac{7x\left(2x2\right)^5x3^{11}+2^{13}x\left(3x3\right)^5}{\left(2x3\right)^{10}+2^{12}x3^{10}}\)
\(A=\frac{7x2^{10}x3^{11}+2^{13}x3^{10}}{2^{10}x3^{10}+2^{12}x3^{10}}\)
tự làm tiếp
m = 1/3-1/5+1/5-1/7+1/7-1/9+...+1/97-1/99
m = 1/3-1/99=32/99
Sorry chị em ko làm đc câu b vì em mới học lớp 4
k em ha
a) \(M=\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+...+\frac{2}{97\times99}\)
\(\Rightarrow M=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
\(\Rightarrow M=\frac{1}{3}-\frac{1}{99}\)
\(\Rightarrow M=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}\)
b) \(N=\frac{3}{5\times7}+\frac{3}{7\times9}+\frac{3}{9\times11}+...+\frac{3}{197\times199}\)
\(\Rightarrow N=3\times\left(\frac{1}{5\times7}+\frac{1}{7\times9}+\frac{1}{9\times11}+...+\frac{1}{197\times199}\right)\)
\(\Rightarrow N=3\times\left[2\times\left(\frac{1}{5\times7}+\frac{1}{7\times9}+\frac{1}{9\times11}+...+\frac{1}{197\times199}\right)\right]\)
\(\Rightarrow N=3\times\left(\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}+...+\frac{2}{197\times199}\right)\)
\(\Rightarrow N=3\times\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{197}-\frac{1}{199}\right)\)
\(\Rightarrow N=3\times\left(\frac{1}{5}-\frac{1}{199}\right)\)
\(\Rightarrow N=3\times\frac{194}{995}=\frac{582}{995}\)
----Chúc em học giỏi !----
\(A=11\frac{2}{1.3}+11\frac{2}{3.5}+11\frac{2}{5.7}+11\frac{2}{7.9}+11\frac{2}{9.11}\)
\(A=11+\frac{2}{1.3}+11+\frac{2}{3.5}+11+\frac{2}{5.7}+11+\frac{2}{7.9}+11+\frac{2}{9.11}\)
\(A=55+\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(A=55+\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(A=55+\frac{1}{1}-\frac{1}{11}\)
\(A=56-\frac{1}{11}\)
\(A=\frac{616}{11}-\frac{1}{11}=\frac{615}{11}\)
Vậy A = 615 / 11
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\)
\(=\frac{1}{1}-\frac{1}{11}=\frac{10}{11}\)
\(\frac{5^2\times6^{11}\times16^2+6^2\times12^6\times15^2}{2\times6^{12}\times10^4-81^2\times960^3}\)
\(=\frac{5^2\times\left(2\times3\right)^{11}\times\left(2^4\right)^2+\left(2\times3\right)^2\times\left(2^2\times3\right)^6\times\left(3\times5\right)^2}{2\times\left(2\times3\right)^{12}\times\left(2\times5\right)^4-\left(3^4\right)^2\times\left(2^6\times3\times5\right)^3}\)
\(=\frac{5^2\times2^{19}\times3^{11}+2^{14}\times3^{10}\times5^3}{2^{17}\times5^4\times3^{12}-3^{11}\times2^{18}\times5^3}\)
\(=\frac{5^2\times3^{10}\times2^{14}\times\left(2^5\times3+5\right)}{2^{17}\times5^3\times3^{11}\times\left(5\times3-2\right)}\)
\(=\frac{2^5\times3+5}{2^3\times5\times3\times12}\)
\(=\frac{32\times3+5}{8\times15\times12}=\frac{96+5}{120\times12}=\frac{101}{1440}\)
a) \(\frac{2^{11}.9^2}{3^5.16^2}=\frac{2^{11}.3^4}{3^5.2^8}=\frac{2^3}{3}=\frac{8}{3}\)
a = 8/3
b = 1/4
c = 6/5