cho \(\frac{x}{-6}=\frac{y}{4}=\frac{z}{\frac{-1}{2}}\)và 4x+y-2z=27 tim x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\) = \(\dfrac{x+y+z}{2+3+5}=\dfrac{-90}{10}=-9\)
\(\dfrac{x}{2}=-9\) => x= -18
\(\dfrac{y}{3}=-9\) => y = -27
\(\dfrac{z}{5}=-9\) => z = -45
a) \(4x=5y\) <=> \(x=\dfrac{5y}{4}\)
\(3\cdot\dfrac{5y}{4}-2y=35\)
=> y = 20
=> x = \(\dfrac{5\cdot20}{4}\)=25
\(\frac{1}{x^4}+\frac{1}{y^4}=\frac{x^2}{x^6}+\frac{1}{y^4}\ge\frac{\left(x+1\right)^2}{x^6+y^4}\ge\frac{4x}{x^6+y^4}\)
tương tự
\(\frac{1}{y^4}+\frac{1}{z^4}\ge\frac{4y}{y^6+z^4}\);
\(\frac{1}{z^4}+\frac{1}{x^4}\ge\frac{4z}{z^6+x^4}\);
cộng vế với vế => đpcm
Dấu "=" xảy ra <=> x=y=z=1
Nếu một trong các số x,y,z bằng không thì dễ thấy các số còn lại cũng bằng 0
Suy ra x;y;z khác 0
Đặt \(2=a;4=b;6=c\) khi đó ta có:
\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}\)
\(\Rightarrow\frac{xyz}{ayz+bxz}=\frac{xyz}{bxz+xcy}=\frac{xyz}{cyx+ayz}\)
Mà \(x;y;z\ne0\) suy ra:
\(ayz+bxz=bxz+xcy=cxy+ayz\)
\(\Rightarrow az=cx;bx=ay\)
\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)
\(\Rightarrow x=ak;y=bk;z=ck\)
Khi đó:\(\frac{xy}{ay+bx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(\Rightarrow\frac{ak\cdot bk}{abk+abk}=\frac{a^2k^2+b^2k^2+c^2k^2}{a^2+b^2+c^2}\)
\(\Rightarrow\frac{k}{2}=k^2\)
\(\Rightarrow k=\frac{1}{2}\)
\(\Rightarrow x=\frac{a}{2};y=\frac{b}{2};z=\frac{c}{2}\)
Thay số vào,ta được:
\(x=1;y=2;z=3\)
\(\frac{xy}{2y+4x}=\frac{yz}{4z+6y}=\frac{xz}{6x+2z}\)(4z chứ 4x là sai đề rồi bạn)
\(\Leftrightarrow\frac{x}{2}+\frac{y}{4}=\frac{y}{4}+\frac{z}{6}=\frac{z}{6}+\frac{x}{2}\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)tự làm tiếp :))
sorry sai đề :v
Sửa \(\frac{xy}{2y+4x}+\frac{yz}{4z+6y}=\frac{zx}{6x+2z}=\frac{x^2+y^2+z^2}{2^2+4^2+6^2}\)
Ta có :
\(\frac{xy}{2y+4x}=\frac{yz}{4z+6y}=\frac{zx}{6x+2z}=\frac{x^2+y^2+z^2}{2^2+4^2+6^2}\)
\(\Leftrightarrow\frac{xyz}{2yz+4xz}=\frac{xyz}{4xz+6xy}=\frac{xyz}{6xy+2yz}\)
\(\Rightarrow2yz+4xz=4xz+6xy=6xy+2yz\)
\(\Rightarrow\hept{\begin{cases}2yz=6xy\\4xz=2yz\end{cases}}\Leftrightarrow\hept{\begin{cases}z=3x\\y=2x\end{cases}}\)
\(\rightarrow x:y:z=1:2:3\frac{xy}{2y+4x}\) \(=\frac{yz}{4z+6y}=\frac{zx}{6x+2z}=\frac{2x^2}{4y+4x}=\frac{x}{4}.\frac{x^2+y^2+z^2}{2^2+4^2+6^2}=\frac{14x^2}{56}=\frac{x^2}{4}\rightarrow\frac{x^2}{4}=\frac{x}{4}\)
\(\Rightarrow\frac{x^2-x}{4}=0\Leftrightarrow x-1=0\left(x\ne0\right)\)
\(\Rightarrow x=1\rightarrow x=1;y=2;z=3\)
Làm thử thôi sai thì thôi nha !
Ta có: \(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-1}{4}\) \(\Leftrightarrow\frac{2x-2}{10}=\frac{3y-6}{9}=\frac{2z-2}{8}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{2x-2}{10}=\frac{3y-6}{9}=\frac{2z-2}{8}=\frac{2x-2-3y+6-2z+2}{10-9-8}=\frac{-27+6}{-7}=\frac{-21}{-7}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x-1}{5}=3\\\frac{y-2}{3}=3\\\frac{z-1}{4}=3\end{cases}\Rightarrow}\hept{\begin{cases}x-1=15\\y-2=9\\z-1=12\end{cases}\Rightarrow}\hept{\begin{cases}x=16\\y=11\\z=13\end{cases}}\)
Vậy...
Áp dụng bất đẳng thức Cauchy - Schwarz : \(\frac{a^2}{b}+\frac{c^2}{d}\ge\frac{\left(a+c\right)^2}{b+d}\)
\(\frac{1}{x^4}+\frac{1}{y^4}=\frac{x^2}{x^6}+\frac{1^2}{y^4}\ge\frac{\left(x+1\right)^2}{x^6+y^4}\ge\frac{4x}{x^6+y^4}\)(\(\left(a+b\right)^2\ge4a\))
Tương tự: \(\frac{1}{y^4}+\frac{1}{z^4}\ge\frac{4y}{y^6+z^4};\frac{1}{z^4}+\frac{1}{x^4}\ge\frac{4z}{z^6+x^4}\)
\(\Rightarrow2.\left(\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\right)\ge4\left(\frac{x}{x^6+y^4}+\frac{y}{y^6+z^4}+\frac{z}{z^6+x^4}\right)\)
\(\Rightarrow\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\ge\frac{2x}{x^6+y^4}+\frac{2y}{y^6+z^4}+\frac{2z}{z^6+x^4}\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)
với x,y,z >0 áp dụng bđt cosi ta có:
\(x^6+y^4>=2\sqrt{x^6y^4}=2x^3y^2\Rightarrow\frac{2x}{x^6+y^4}< =\frac{2x}{2x^3y^2}=\frac{1}{x^2y^2}\)
\(y^6+z^4>=2\sqrt{y^6z^4}=2y^3z^2\Rightarrow\frac{2y}{y^6+z^4}< =\frac{2y}{2y^3z^2}=\frac{1}{y^2z^2}\)
\(z^6+x^4>=2\sqrt{z^6x^4}=2z^3x^2\Rightarrow\frac{2z}{z^6+x^4}< =\frac{2z}{2z^3x^2}=\frac{1}{z^2x^2}\)
\(\Rightarrow\frac{2x}{x^6+y^4}+\frac{2y}{y^6+z^4}+\frac{2z}{z^6+x^4}< =\frac{1}{x^2y^2}+\frac{1}{y^2z^2}+\frac{1}{z^2x^2}\left(1\right)\)
với x,y,z>0 áp dụng bđt cosi ta có:
\(\frac{1}{x^4}+\frac{1}{y^4}>=2\sqrt{\frac{1}{x^4}\cdot\frac{1}{y^4}}=\frac{2}{x^2y^2}\)
\(\frac{1}{y^4}+\frac{1}{z^4}>=2\sqrt{\frac{1}{y^4}\cdot\frac{1}{z^4}}=\frac{2}{y^2z^2}\)
\(\frac{1}{x^4}+\frac{1}{z^4}>=2\sqrt{\frac{1}{x^4}\cdot\frac{1}{z^4}}=\frac{2}{x^2z^2}\)
\(\Rightarrow\frac{2}{x^4}+\frac{2}{y^4}+\frac{2}{z^4}>=\frac{2}{x^2y^2}+\frac{2}{y^2z^2}+\frac{2}{x^2z^2}\Rightarrow\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}>=\frac{1}{x^2y^2}+\frac{1}{y^2z^2}+\frac{1}{x^2z^2}\)
\(\Rightarrow\frac{1}{x^2y^2}+\frac{1}{y^2z^2}+\frac{1}{x^2z^2}< =\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\left(2\right)\)
từ \(\left(1\right)\left(2\right)\Rightarrow\frac{2x}{x^6+y^4}+\frac{2x}{y^6+z^4}+\frac{2x}{z^6+x^4}< =\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\)(đpcm)
dấu = xảy ra khi x=y=z=1
Đặt cái thứ nhất bằng k, rồi rút x;y;z theo k
thay vào cái thứ 2 rồi rút gọn tính dc k;
thay ngược lại tìm x;y;z
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{-6}=\frac{y}{4}=\frac{z}{-\frac{1}{2}}\)\(=\frac{4x+y-2z}{-6.4+4-\left(-\frac{1}{2}.2\right)}\)\(=\frac{27}{-24+4+1}=\frac{27}{-19}\)
\(\frac{x}{-6}=\frac{-27}{19}\)\(=>x=\frac{\left(-27\right).\left(-6\right)}{19}=\frac{162}{19}\)
Ta có:
\(\frac{x}{-6}\)=\(\frac{4x}{-24}\)
\(\frac{z}{\frac{-1}{2}}\)=\(\frac{2z}{-1}\)
Theo tính chất của dãy tỉ số = nhau:
\(\frac{4x}{-24}\)= \(\frac{y}{4}\)=\(\frac{2z}{-1}\)= \(\frac{4x+y-2z}{-24+4-\left(-1\right)}\)= \(\frac{-27}{19}\)
\(\frac{x}{-6}\)= \(\frac{-27}{19}\)nên x= \(\frac{162}{19}\)= \(8\frac{10}{19}\)
\(\frac{y}{4}\)= \(\frac{-27}{19}\)nên y= \(\frac{-108}{19}\)=\(-5\frac{13}{19}\)
\(\frac{z}{-\frac{1}{2}}\)= \(\frac{-27}{19}\)nên z= \(\frac{27}{38}\)