CHO A+B+C=2016
TÌM GTNN CỦA S=A^2+2B^2+3C^2
GIÚP E VỚI MÁY CHỦ ƠI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left(a;2b;3c\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)
\(Q=\dfrac{x+1}{1+y^2}+\dfrac{y+1}{1+z^2}+\dfrac{z+1}{1+x^2}\)
Ta có:
\(\dfrac{x+1}{1+y^2}=x+1-\dfrac{\left(x+1\right)y^2}{1+y^2}\ge x+1-\dfrac{\left(x+1\right)y^2}{2y}=x+1-\dfrac{\left(x+1\right)y}{2}\)
Tương tự:
\(\dfrac{y+1}{1+z^2}\ge y+1-\dfrac{\left(y+1\right)z}{2}\) ; \(\dfrac{z+1}{1+x^2}\ge z+1-\dfrac{\left(z+1\right)x}{2}\)
Cộng vế:
\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{2}\left(xy+yz+zx\right)\)
\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{6}\left(x+y+z\right)^2=\dfrac{3}{2}+3-\dfrac{9}{6}=3\)
\(Q_{min}=3\) khi \(x=y=z=1\) hay \(\left(a;b;c\right)=\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\)
\(S=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
\(=\left(\frac{3a}{4}+\frac{3}{a}\right)+\left(\frac{b}{2}+\frac{9}{2b}\right)+\left(\frac{c}{4}+\frac{4}{c}\right)+\frac{1}{4}\left(a+2b+3c\right)\)
\(\ge2\sqrt{\frac{3a}{4}.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{c}{4}.\frac{4}{c}}+\frac{1}{4}.20\)
\(\Rightarrow S\ge13\)
Đẳng thức xảy ra khi a = 2, b = 3, c = 4
Vậy minS = 13 tại (a,b,c) = (2,3,4)
Đúng như bạn Quang viết, GTNN của S là 13 khi \(\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\), nhưng mình cần một lời giải thích vì sao nó lại ra như vậy.
\(P=a^2-2a+b^2-2b+c^2-2c+3\)
\(P=\left(a^2+\dfrac{9}{4}\right)+\left(b^2+4\right)+\left(c^2+\dfrac{25}{4}\right)-2a-2b-2c-\dfrac{19}{2}\)
\(P\ge3a+4b+5c-2a-2b-2c-\dfrac{19}{2}\)
\(P\ge a+2b+3c-\dfrac{19}{2}=13-\dfrac{19}{2}=\dfrac{7}{2}\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};2;\dfrac{5}{2}\right)\)
từ hệ điều kiện, bằng cách cộng theo vế ta được: 3(a^2+b^2+c^2+d^2)=42+d^2⇒3p≥42⇔p≥14Suy ra pmin=14 đạt được khi d=0 và khi đó hệ điều kiện có dạng:
{a2+2b2+3c2=36(1),2a2+b2=6(2)
Từ (2) ta nhận được {bchẵn,0≤b≤2⇔[b=0b=2Khi đó:-Với b=0 thì (2) có dạng 2a^2=6, không có giá trị nguyên của a thỏa mãn.-Với b=2 thì hệ có dạng: {a^2+3c^2=28, 2a^2=2 mà a≥0,c≥0 ⇒{a=1c=3Vậy pmin=14 đạt được khi a=1,b=2,c=3,d=0
Từ giả thiết suy ra \(3\left(a^2+b^2+c^2+d^2\right)-d^2=42\)
\(\Leftrightarrow3Q-d^2=42\)
\(\Rightarrow Q=\dfrac{42+d^2}{3}\ge\dfrac{42}{3}=14\)
\(\Rightarrow minQ=14\Leftrightarrow\left\{{}\begin{matrix}d=0\\a^2+2b^2+3c^2=36\left(1\right)\\2a^2+b^2=6\left(2\right)\end{matrix}\right.\)
Từ \(\left(2\right)\Rightarrow b^2⋮2\Rightarrow b⋮2\)
Vì \(b^2=6-2a^2\le6\Rightarrow0\le b\le\sqrt{6}\Rightarrow b\in\left\{0;2\right\}\)
TH1: \(b=0\) ta được \(\left\{{}\begin{matrix}a^2+3c^2=36\\2a^2=6\end{matrix}\right.\Rightarrow a=\sqrt{3}\left(l\right)\)
TH2: \(b=2\) ta được \(\left\{{}\begin{matrix}a^2+3c^2=28\\2a^2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=3\\a=1\end{matrix}\right.\)
Vậy \(minQ=14\Leftrightarrow\left(a;b;c;d\right)=\left(1;2;3;0\right)\)
\(A=a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\\ A=\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\left(\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{3c}{4}\right)\\ A=\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\dfrac{1}{4}\left(a+2b+3c\right)\\ A\ge2\sqrt{\dfrac{3a}{4}\cdot\dfrac{3}{a}}+2\sqrt{\dfrac{b}{2}\cdot\dfrac{9}{2b}}+2\sqrt{\dfrac{c}{4}\cdot\dfrac{4}{c}}+\dfrac{1}{4}\cdot20\\ A\ge3+3+2+5=13\\ A_{min}=13\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)
đặt
\(A=a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)
\(=>4A=4a+4b+4c+\dfrac{12}{a}+\dfrac{36}{2b}+\dfrac{16}{c}\)
\(=>4A=a+2b+3c+3a+\dfrac{12}{a}+2b+\dfrac{36}{2b}+c+\dfrac{16}{c}\)
áp dụng BDT AM-GM
\(=>\dfrac{12}{a}+3a\ge2\sqrt{12.3}=12\)
\(=>2b+\dfrac{36}{2b}\ge2\sqrt{36}=12\)
\(=>c+\dfrac{16}{c}\ge2\sqrt{16}=8\)
\(=>4A\ge20+12+12+8=52=>A\ge13\)
dấu"=" xảy ra<=>a=2,b=3,c=4
Dùng bđt Bunhiacopxki
\(\left[a^2+\left(\sqrt{2}b\right)^2+\left(\sqrt{3}c\right)^2\right]\left[1+\left(\frac{1}{\sqrt{2}}\right)^2+\left(\frac{1}{\sqrt{3}}\right)^2\right]\ge\left(a+b+c\right)^2=2016^2\)
\(\Rightarrow S\ge\frac{2016^2}{\frac{11}{6}}=\frac{2016^2.6}{11}\)
Dấu bằng xảy ra khi \(\hept{\begin{cases}\frac{a}{1}=\frac{\sqrt{2}b}{\frac{1}{\sqrt{2}}}=\frac{\sqrt{3}c}{\frac{1}{\sqrt{3}}}\\a+b+c=2016\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2b=3c\\a+b+c=2016\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{12096}{11}\\b=\frac{6048}{11}\\c=\frac{4032}{11}\end{cases}}\)