K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

Ta có thể suy luận như sau: 

Vì n + 6 chia hết cho n nên suy ra 6 chia hết cho n (vì n chia hết cho n nên bắt buộc 6 phải chia hết cho n)--> n = 1, 2, 3, 6.

(n - 2) + 7 chia hết cho n - 2 nên suy ra 7 chia hết cho n - 2 --> n - 2 = 1 hoặc n - 2 = 7 --> n = 3 hoặc n = 9

n + 15 chia hết cho n + 4. Tương tự ta phân tích ra thành (n + 4) + 11 chia hết cho n + 4 --> 11 chia hết cho n + 4 --> n = 7
Những câu sau e làm tương tự nhé. Bài toán chung cho dạng này là:

a + b chia hết cho c nếu a chia hết cho c thì b phải chia hết cho c. Từ đó ý tưởng của việc giải các bài toán trên là biến đổi vế trái về dạng a + b trong đó a chia hết cho c. Chúc em học càng ngày càng giỏi nhé.

1 tháng 8 2016

n(ư)6 = -1;1;-2;2;-3;3

n = -7;-6;-8;-4;-9;-3

23 tháng 11 2015

a/n=4
b/n=6
c/n=1
d/n=3
e/n=0

28 tháng 10 2020
  1. n=6
  2. k thể làm đc
  3. n=3
  4. n=2
  5. ko bik làm xin lỗi nhiều!
  6. n=2
  7. n=4
  8. n=1
5 tháng 7 2016

a) n+2 chia hết cho n - 1

=> n-1 + 3 chia hết cho n -1

=> n - 1 thuộc Ư (3) = {1;-1;3;-3}

=> n = {2;0;4;-2}

b) n +4 chia hết cho n + 1 

=> n + 1 + 3 chia hết cho n + 1

=> n + 1 thuộc Ư (3) = {1;-1;3;-3}

=> n = {0;-2;2;-4}

c) 2n + 7 chia hết cho n + 1

=> n + 1 + n + 1 + 5 chia hết cho n + 1

=> n + 1 thuộc Ư(5)

=> n + 1 = {1;-1;5;-5}

=> n = {0;-2;4;-6}

d) 2n + 1 chia hết cho n - 3

=> n - 3 + n - 3 - 5 chia hết cho n - 3

=> n - 3 thuộc Ư(-5) = {1;-1;5;-5}

=> n  = {4;2;8;-2}

5 tháng 7 2016

a) Vì n+2 chia hết cho n-1 => (n-1)+3 chia hết cho n-1

Vì \(n-1⋮n-1\Rightarrow3⋮n-1\Rightarrow n-1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)

Ta có bảng sau:

n-11-13-3
n204-2

=> n={2;0;4;-2}

b) Vì n+4 chia hết cho n+1 => (n+1)+3 chia hết cho n+1

Mà \(\left(n+1\right)⋮n+1\Rightarrow3⋮\left(n+1\right)\Rightarrow\left(n+1\right)\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)

Ta có bảng sau:

n+113-1-3
n02-2-4

=> n={0;2;-2;-4}

c) Vì 2n+7 chia hết cho n+1 => 2(n+1)+5 chia hết cho n+1

Mà \(2\left(n+1\right)⋮n+1\Rightarrow5⋮\left(n+1\right)\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)

Ta có bảng sau:

n+115-1-5
n04-2-6

=> n={0;4;-2;-6}

d) Vì 2n+1 chia hết cho n-3 => 2(n-3)+7 chia hết cho n-3

Mà \(2\left(n-3\right)⋮\left(n-3\right)\Rightarrow7⋮\left(n-3\right)\Rightarrow\left(n-3\right)\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)

Ta có bảng sau:

n-317-1-7
n4102-4

=> n={4;10;2;-4}

Gì mak zài zữ zậy bạn ucche

19 tháng 8 2020

a) Có: n + 11 chia hết cho n - 1

=> n - 1 + 12 chia hết cho n - 1

=> 12 chia hết cho n - 1

=> n - 1 thuộc Ư(11) = {-11 ; -1 ; 1 ; 11}

=> n thuộc {-10 ; 0 ; 2 ; 12}

Mà n thuộc N nên n thuộc {0 ; 2 ; 12}

Vậy n thuộc {0 ; 2 ; 12}.

b) Có: 7n chia hết cho n - 3

=> 7n - 21 + 21 chia hết cho n - 3

=> 7 (n - 3) + 21 chia hết cho n - 3

=> 21 chia hết cho n - 3

=> n - 3 thuộc Ư(21) = {-21 ; -7 ; -3 ; -1 ; 1 ; 3 ; 7 ; 21}

=> n thuộc {-18 ; -4 ; 0 ; 2 ; 4 ; 6 ; 10 ; 24}

Mà n là số tự nhiên nên n thuộc {0 ; 2 ; 4 ; 6 ; 10 ; 24}

Vậy ...

c) Có: n2 + 2n + 6 chia hết cho n + 4

=> n2 + 4n - 2n + 8 - 2 chia hết cho n + 4

=> n (n + 4) - 2 (n + 4) - 2 chia hết cho n + 4

=> 2 chia hết cho n + 4

=> n + 4 thuộc Ư(2) = {-2 ; -1 ; 1 ; 2}

=> n thuộc {-6 ; -5 ; -3 ; -2}

Mà n là STN nên n thuộc rỗng

Vậy ...

d) Có: n2 + n + 1 chia hết cho n + 1

=> n (n + 1) + 1 chia hết cho n + 1

=> 1 chia hết cho n + 1

=> n + 1 thuộc Ư(1) = {-1 ; 1}

=> n thuộc {-2 ; 0}

Vậy ...

7 tháng 11 2016

Ta có : n+13=(n-5) + 8

Suy ra :(n-5) + 8 chia hết cho n-5

Ta có : ( n-5 ) chia hết cho n-5 mà (n-5 ) + 8 chia hết cho n-5 . Vậy 8 chia hết cho n-5 

Suy ra : n-5 thuộc Ư ( 8 )

Suy ra : n-5 thuộc { 1 ;2;4;8}

Suy ra : n thuộc {6;7;9;13}

7 tháng 11 2016

2 ) ta có : n+3 chia hết n

Mà ta có n chia hết cho n mà n+3 chia hết cho n . Vậy 3 chia hết cho n 

Suy ra: n thuộc Ư (3)

Suy ra : n thuộc { 1 ;3 }

23 tháng 2 2021

a)Ta có: 2n+9 chia hết n+3

<=>(2n+9)-2(n+3) chia hết n+3

<=>(2n+9)-(2n+6) chia hết n+3

<=>3 chia hết n+3

<=>n+3 thuộc {1;3}

<=>n=0

Vậy n = 0

b) Ta có 3n-1 chia hết cho 3-2n

=> 6n-2 chia hết cho 3-2n

=> 3(3-2n)-11 chia hết cho 3-2n

=> 11 chia hết cho 3-2n

=> 3-2n là ước của 11 và n là số tự nhiên => 3-2n thuộc {1;11}

• 3-2n=1 => n=1

• 3-2n=11=> n ko là số tự nhiên

Vậy n=1

c) (15 - 4n) chia hết cho n

=> 15 chia hết cho n
=> n ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
mà n ∈ N và n < 4
=> n = {1; 3}

d)  n=7 vì (n+13)chia hết cho (n-5) và n lớn hơn 5 

e) 15-2n = 13+ (2-2n) = 13+2(1-n) : n-1 = 

13n-1-2

=> n-1 là ước dương của 13

=> n-1 = 13 hoặc n-1 = 1 hoặc n = -1 hoặc n=-13

=> n=14 hoặc n= 2 hoặc n=0 howjc n=-12

Mà n thuộc N và n<8 => n=0 hoặc n=2

g)

6n+9⋮4n−1

⇒2.(6n+9)⋮4n−1

⇒12n+18⋮4n−1

⇒12n−3+21⋮4n−1

⇒3.(4n−1)+21⋮4n−1

Vì 3.(4n−1)⋮4n−1⇒21⋮4n−1

Mà 4n - 1 chia 4 dư 3; 4n−1≥−1 do n∈N

⇒4n−1∈{−1;3;7}

⇒4n∈{0;4;8}

20 tháng 11 2019

a) Ta có: n + 6 \(⋮\)n

Do n \(⋮\)n => 6 \(⋮\)n

=> n \(\in\)Ư(6) = {1; 2; 3; 6}

b)Ta có: (n + 9) \(⋮\)(n + 1)

<=> [(n + 1) + 8] \(⋮\)(n + 1)

Do (n + 1) \(⋮\)(n + 1) => 8 \(⋮\)(n + 1)

=> (n + 1) \(\in\)Ư(8) = {1; 2; 4; 8}

=> n \(\in\){0; 1; 3; 7}

c) Ta có: n - 5 \(⋮\)n + 1

<=> (n + 1) - 6 \(⋮\)n + 1

Do (n + 1)  \(⋮\)n + 1 => 6 \(⋮\)n + 1

=> n + 1 \(\in\)Ư(6) = {1; 2; 3; 6}

=> n \(\in\){0; 1; 2; 5}

d) Ta có: 2n + 7 \(⋮\)n - 2

=> 2(n-  2) + 11 \(⋮\)n - 2

Do 2(n - 2) \(⋮\)n - 2 => 11 \(⋮\)n - 2

=> n - 2 \(\in\)Ư(11) = {1; 11}

=> n \(\in\){3; 13}

20 tháng 11 2019

a) n= 6

b) n= 1

d) n=1

Check lại nhé. 

15 tháng 10 2016

2/a)n=2

17 tháng 8 2016

a) n + 2 chia hết cho n - 1

=> n - 1 + 3 chia hết cho n - 1

Do n - 1 chia hết cho n - 1 => 3 chia hết cho n - 1

Mà n thuộc N => n - 1 > hoặc = -1

=> n - 1 thuộc {-1 ; 1 ; 3}

=> n thuộc {0 ; 2 ; 4}

Những câu còn lại lm tương tự

17 tháng 8 2016

Giải:

a) \(n+2⋮n-1\)

\(\Rightarrow\left(n-1\right)+3⋮n-1\)

\(\Rightarrow3⋮n-1\)

\(\Rightarrow n-1\in\left\{\pm1;\pm3\right\}\)

+) \(n-1=1\Rightarrow n=2\)

+) \(n-1=-1\Rightarrow n=0\)

+) \(n-1=3\Rightarrow n=4\)

+) \(n-1=-3\Rightarrow n=-2\)

Vậy \(n\in\left\{2;0;4;-2\right\}\)

b) \(2n+7⋮n+1\)

\(\Rightarrow\left(2n+2\right)+5⋮n+1\)

\(\Rightarrow2\left(n+1\right)+5⋮n+1\)

\(\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\in\left\{\pm1;\pm5\right\}\)

+) \(n+1=1\Rightarrow n=0\)

+) \(n+1=-1\Rightarrow n=-2\)

+) \(n+1=3\Rightarrow n=2\)

+) \(n+1=-3\Rightarrow n=-4\)

Vậy \(n\in\left\{0;-2;2;-4\right\}\)