Cho góc xoy=90 độ và tia phân giác ot, lấy A thuộc Õ,đường thẳng qua A song song với Oy cắt Ot tại B,kẻ BC vuông góc với Oy tại C
1) chứng minh AB vuông góc Ox
2) chứng minh tứ giác ABOC là hình vuông
AC cắt BO tại Q.Chứng minh:QO=QM=QB=QC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhé!
a) xét tam giác OAM và tam giác OBM có
OM cạnh chung
O1 = O2 ( vì Ot là tia phân giác )
OA = OB ( gt )
=> tam giác OAM = tam giác OBM ( c.g.c )
b) vì tam giác OAM = tam giác OBM
=> AM = BM ( cạnh tương ứng )
=> góc AMO = góc OBM ( góc tương ứng )
=> OM vuông góc với AB
C) xét tam giác ANO và tam giác BNO có
ON cạnh chung
OA = OB ( gt )
O1 = O2 ( Vì Ot là tia phân giác )
=> tam giác ANO = tam giác BNO ( c.g.c )
=> NA = NB ( cạnh tương ứng )
a: Xét ΔADO và ΔBDO có
OA=OB
\(\widehat{AOD}=\widehat{BOD}\)
OD chung
Do đó: ΔADO=ΔBDO
b: Xét ΔOED vuông tại E và ΔOFD vuông tại F có
OD chung
\(\widehat{EOD}=\widehat{FOD}\)
Do đó: ΔOED=ΔOFD
Suy ra: OE=OF
c: Xét ΔOAB có
OE/OA=OF/OB
Do đó: EF//AB