K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2016

2x2-5x+4<0

=>2( x2-\(\frac{5}{2}\).x +2)<0

=> 2(x2-\(\frac{5}{2}\).x+\(\frac{25}{16}\))+\(\frac{7}{8}\)<0

=>2(x-\(\frac{5}{4}\))2+\(\frac{7}{8}\)<0 (vô lí)

Vậy bất phương trình trên vô nghiệm

30 tháng 7 2016

Có: \(\Delta=\left(-5\right)^2-4.2.4=-7< 0\)

mà 2 > 0

=> pt trên luôn luôn dương với mọi x thuộc R

mà đề cho: 2x2 - 5x + 4 < 0 (vô lí)

                        Vậy x  thuộc rỗng

21 tháng 6 2016

\(2x^2-5x+4< 0\)

<=> \(2\left(x^2-\frac{5}{2}x+2\right)< 0\)

<=> \(x^2-\frac{5}{2}x+2< 0\)

<=> \(x^2-2\times x\times\frac{5}{4}+\frac{25}{16}-\frac{25}{16}+2< 0\)

<=> \(\left(x-\frac{5}{4}\right)^2< -0,4375\)

Điều này là vô lí vì \(\left(x-\frac{5}{4}\right)^2\ge0\)

7 tháng 5 2020

x-1 + x-3 =1 <=> 2x -4=1 tu giai not

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

9 tháng 5 2021

a,\(2x+5=2-x\)

\(< =>2x+x+5-2=0\)

\(< =>3x+3=0\)

\(< =>x=-1\)

b, \(/x-7/=2x+3\)

Với \(x\ge7\)thì \(PT< =>x-7=2x+3\)

\(< =>2x-x+3+7=0\)

\(< =>x+10=0< =>x=-10\)( lọai )

Với \(x< 7\)thì \(PT< =>7-x=2x+3\)

\(< =>2x+x+3-7=0\)

\(< =>3x-4=0< =>x=\frac{4}{3}\) ( loại )

9 tháng 5 2021

c,\(\frac{4}{x+2}-\frac{4x-6}{4x-x^3}=\frac{x-3}{x\left(x-2\right)}\left(đk:x\ne-2;0;2\right)\)

\(< =>\frac{4x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{4x-6}{x\left(x-2\right)\left(2+x\right)}=\frac{\left(x-3\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)

\(< =>4x^2-8x+4x-6=x^2-x-6\)

\(< =>4x^2-x^2-4x+x-6+6=0\)

\(< =>3x^2-3x=0< =>3x\left(x-1\right)=0< =>\orbr{\begin{cases}x=0\left(loai\right)\\x=1\left(tm\right)\end{cases}}\)

7 tháng 4 2019

a) \(x^2-5x+6< 0\)

\(\Leftrightarrow x^2-2x-3x+6< 0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)< 0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x-2>0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 3\end{cases}}}\)

\(\Leftrightarrow2< x< 3\)

Vậy \(2< x< 3\)là các giá trị cần tìm của bất phương trình

b) \(\frac{2x\left(3x-5\right)}{x^2+1}< 0\)

\(\Leftrightarrow2x\left(3x-5\right)< 0\)(vì \(x^2+1>0\forall x\) )

\(\Leftrightarrow\hept{\begin{cases}2x>0\\3x-5< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\3x< 5\end{cases}\Leftrightarrow}\hept{\begin{cases}x>0\\x< \frac{5}{3}\end{cases}}}\)

\(\Leftrightarrow0< x< \frac{5}{3}\)

Vậy \(0< x< \frac{5}{3}\)là các giá trị cần tìm của bất phương trình