K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2016

Điều kiện : \(x\ne4\)

Biểu diễn : \(C=\frac{22-3x}{4-x}=\frac{3\left(4-x\right)+10}{4-x}=\frac{10}{4-x}+3\)

Ta có C đạt giá trị lớn nhất \(\Leftrightarrow\frac{10}{4-x}\)đạt giá trị lớn nhất \(\Leftrightarrow4-x\)đạt giá trị nhỏ nhất

Đến đây ta xét các trường hợp :

1. Với \(x>4\Rightarrow4-x< 0\Rightarrow\frac{10}{4-x}< 0\)

2. Với \(0\le x\le3\) \(\Rightarrow\frac{5}{2}\le\frac{10}{4-x}\le10\)

3. Với \(x< 0\), xét  \(f\left(x\right)=4-x\) có giá trị càng tăng khi x càng giảm (x < 0) , do đó f(x) nhỏ nhất tại x = -1

\(\Rightarrow\frac{10}{4-x}=2\)

So sánh các trường hợp , được \(MaxC=13\Leftrightarrow x=3\)

30 tháng 7 2016

giá trị lớn nhất là 13 tại x = 3

30 tháng 7 2016

Ta có

\(C=\frac{12-3x}{4-x}+\frac{10}{4-x}=3+\frac{10}{4-x}\)

C lớn nhất <=> \(\frac{10}{4-x}\) lớn nhất <=> 4 - x bé nhất >0

Mà x nguyên

=>x=1

Thay vào ta có \(C=\frac{22-3.1}{4-1}=\frac{19}{4}\)

Vậy MAX(C)=19/4 khi x=1

30 tháng 7 2016

C=\(\frac{22-3x}{4-x}=3+\frac{10}{4-x}\)để C lớn nhất thì \(\frac{10}{4-x}\) lớn nhất

mà x nguyên=> 4-x=1=> x=3

vậy GTLN của C=13 khi x=1

30 tháng 7 2016

Ta có: 4 - x \(\ne\)0  \(\Leftrightarrow\) x \(\ne\)4

C = \(\frac{12-3x+10}{4-x}\)=\(\frac{3\left(4-x\right)}{4-x}+\frac{10}{4-x}\)\(3+\frac{10}{4-x}\)

Để C đạt GTLN thì \(\frac{10}{4-x}\)phải là GTLN, mà 10 là số nguyên dương nên 4 - x phải nguyên dương nhỏ nhất.

\(\Rightarrow\)4 - x = 1

\(\Leftrightarrow\)x = 3

Khi do: C = 13

Vậy GTLN của C =13 khi x = 3

5 tháng 12 2023

A = \(\dfrac{22-3x}{4-x}\)

A = \(\dfrac{3.\left(4-x\right)+10}{4-x}\)

A = 3 + \(\dfrac{10}{4-x}\)

A lớn nhất khi \(\dfrac{10}{4-x}\) lớn nhất. Vì 10 > 0; \(x\) \(\in\) Z nên \(\dfrac{10}{4-x}\) lớn nhất khi

 4 - \(x\) = 1 ⇒ \(x\) = 4 - 1 ⇒   \(x\) = 3

Vậy Amin  = 3 + \(\dfrac{10}{1}\) = 13 khi \(x\) =3

Kết luận giái trị lớn nhất của biểu thức là 13 xảy ra khi \(x\) = 3 

24 tháng 2 2020

\(M=\frac{14-x}{4-x}=\frac{10+4-x}{4-x}=1+\frac{10}{4-x}\)

M lớn nhất khi \(\frac{10}{4-x}\)lớn nhất (1)

Xét \(x< 4\)thì \(\frac{10}{4-x}>0\)

      \(x>4\)thì \(\frac{10}{4-x}< 0\)

Vậy ta chỉ quan tâm x < 4 hay 4 - x > 0 (2)

Từ (1) suy ra 4 - x có GTNN  (3)

Từ (2), (3) kết hợp với x nguyên suy ra 4 - x = 1 nên x = 3

Vậy GTLN của M là 11 khi và chỉ khi x = 3

24 tháng 2 2020

\(A=\frac{14-x}{4-x}\)

 \(A=\frac{10+4-x}{4-x}\)

\(A=\frac{10}{4-x}+1\)

Để A lớn nhất thì  \(\frac{10}{4-x}\)lớn nhất

điều này xảy ra khi 4-x là số nguyên dương nhỏ nhất

tức là 4-x=1

x=3

Khi đó A=\(\frac{14-3}{4-3}=11\)

Vậy GTLN của A là 11 khi x=3

20 tháng 1 2017

Làm khâu rút gọn thôi 

\(=\frac{15}{x+2}+\frac{42}{3x+6}\)

\(=\frac{15}{x+2}+\frac{42}{3\left(x+2\right)}\)

\(=\frac{3.15+42}{3\left(x+2\right)}\)

\(=\frac{87}{3\left(x+2\right)}\)

\(=\frac{29}{x+2}\)

20 tháng 1 2017

Câu b có phải để tử chia hết cho mẫu không nhỉ? Không chắc thôi để ngkh làm 

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3