Bài 2: Cho \(a,b>0\)thỏa mãn \(a^4+b^4=2\). CMR \(\frac{5a^2}{b}+\frac{3b^2}{a^2}\ge8\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)
\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)
\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)
\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)
Từ ( 1 ) và ( 2 ) có đpcm
1. BĐT ban đầu
<=> \(\left(\frac{1}{3}-\frac{b}{a+3b}\right)+\left(\frac{1}{3}-\frac{c}{b+3c}\right)+\left(\frac{1}{3}-\frac{a}{c+3a}\right)\ge\frac{1}{4}\)
<=>\(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)
<=> \(\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ac}\ge\frac{3}{4}\)
Áp dụng BĐT buniacoxki dang phân thức
=> BĐT cần CM
<=> \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ac\right)}\ge\frac{3}{4}\)
<=> \(a^2+b^2+c^2\ge ab+bc+ac\)luôn đúng
=> BĐT được CM
2) \(a+b+c\le ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(\left(a+b+c\right)^2-3\left(a+b+c\right)\ge0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a+b+c-3\right)\ge0\)\(\Leftrightarrow\)\(a+b+c\ge3\)
ko mất tính tổng quát giả sử \(a\ge b\ge c\)
Có: \(3\le a+b+c\le ab+bc+ca\le3a^2\)\(\Leftrightarrow\)\(3a^2\ge3\)\(\Leftrightarrow\)\(a\ge1\)
=> \(\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}\le\frac{3}{1+2a}\le1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)
Ta có \(\left(a+b+1\right).\left(a^2+b^2\right)+\frac{4}{a+b}\)
\(\ge\left(a+b+1\right).2ab+\frac{4}{a+b}\)
\(=2.\left(a+b\right)+2+\frac{4}{a+b}\)
\(=a+b+2+a+b+\frac{4}{a+b}\)
\(\ge2.\sqrt{a.b}+2+2.\sqrt{\left(a+b\right).\frac{4}{a+b}}=2+2+2\sqrt{4}\)
\(=2+2+4=8\)
Vậy\(\left(a+b+1\right).\left(a^2+b^2\right)+\frac{4}{a+b}\ge8\)với ab=1
1.
Ta có: \(\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2ac-1}{2017+c}\)
\(=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)
Đặt \(\hept{\begin{cases}2015+a=x\\2016+b=y\\2017+c=z\end{cases}}\)
\(P=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)
\(=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}+\frac{x}{z}+\frac{y}{z}\)
\(\ge2\sqrt{\frac{y}{x}\cdot\frac{x}{y}}+2\sqrt{\frac{z}{x}\cdot\frac{x}{z}}+2\sqrt{\frac{y}{z}\cdot\frac{z}{y}}\left(Cosi\right)\)
Dấu "=" <=> x=y=z => \(\hept{\begin{cases}a=673\\b=672\\c=671\end{cases}}\)
Vậy Min P=6 khi a=673; b=672; c=671
Câu 1 thử cộng 3 vào P xem
Rồi áp dụng BDT Cauchy - Schwars : a^2/x + b^2/y + c^2/z ≥(a + b + c)^2/(x + y + z)
Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc
Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)
Ta có \(LHS=a^3.a+b^3.b+c^3.c\)
\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)
\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)
\(=a^3+b^3+c^3=RHS\)
Đẳng thức xảy ra khi a = b = c = 1
Từ \(a^2+ab-6b^2=0\Rightarrow\left(a^2+3ab\right)-\left(2ab+6b^2\right)=0\)
\(\Leftrightarrow a\left(a+3b\right)-2b\left(a+3b\right)=0\Leftrightarrow\left(a+3b\right)\left(a-2b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-3b\\a=2b\end{cases}}\)
Với \(a=-3b\Rightarrow S=\frac{-3b+3b}{5.\left(-3b\right)+b}=\frac{0}{-14b}=0\)
Với \(a=2b\Rightarrow S=\frac{2b+3b}{5.2b+b}=\frac{5b}{11b}=\frac{5}{11}\)
Áp dụng BĐT Cosi ta có \(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\ge2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)
Tương tự \(\frac{bc}{b^2+c^2}+\frac{b^2+c^2}{4bc}\ge1\) \(\frac{ca}{c^2+a^2}+\frac{c^2+a^2}{4ca}\ge1\)
Khi đó BĐT sẽ được chứng minh nếu ta chỉ ra được
\(\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\left(\frac{a^2+b^2}{4ab}+\frac{b^2+c^2}{4bc}+\frac{c^2+a^2}{4ca}\right)\ge\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\left(\frac{a}{4b}+\frac{b}{4a}+\frac{b}{4c}+\frac{c}{4b}+\frac{a}{4c}+\frac{c}{4a}\right)\right)\ge\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}\left(\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}-\frac{a+c}{b}-\frac{b+c}{a}-\frac{c+a}{b}\right)\ge\frac{3}{4}\)(do \(a+b+c=1\))
\(\Leftrightarrow\frac{3}{4}\ge\frac{3}{4}\) luôn đúng. Từ đó suy ba BĐT được chứng minh. Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
\(2\left(a^2+b^2+c^2\right)+4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2\left(a^2+b^2+c^2\right)+4\frac{ab+bc+ca}{abc}.\)
\(=2\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)\)(vì abc=1)
\(=2\left(a^2+b^2+c^2+2ab+2bc+2ac\right)\)
\(=2\left(a+b+c\right)^2\)
Ta có \(a+b+c\ge3\sqrt[3]{abc}=3\)(bất đẳng thức cô si cho ba số không âm)
Đặt \(a+b+c=x\ge3\)
Dễ thấy : \(2x^2-7x+3=\left(2x-1\right)\left(x-3\right)\ge0\)
Hay \(2\left(a+b+c\right)^2-7\left(a+b+c\right)+3\ge0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge7\left(a+b+c\right)-3\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=3\end{cases}\Leftrightarrow}a=b=c=1\)
Đặt A = a + b + c .
Áp dụng BĐT Cosi cho 3 số thực dương ta có : \(A\ge3^3\sqrt{abc}=3\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-7\left(a+b+c\right)+3\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+4\cdot\frac{ab+bc+ca}{abc}-7\left(a+b+c\right)+3\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)-7\left(a+b+c\right)+3\)
\(\Leftrightarrow2\left(a+b+c\right)^2-7\left(a+b+c\right)+3\)
\(\Leftrightarrow2A^2-7A+3=\left(2A-1\right)\left(A-3\right)\ge0\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Có bđt x2 + y2 \(\ge\)( x + y) /2 ( * )
( * ) \(\Leftrightarrow\)2x2 + 2y2\(\ge\)x2 + 2xy + y2 \(\Leftrightarrow\)x2 - 2xy +y2 \(\ge\)0 \(\Leftrightarrow\)( x- y)2 \(\ge\)0
Dấu "=" xảy ra khi x = y =1
Thay bđt ( * ) vào bài toán ta có:
a4 + b4 \(\ge\)(a2 + b2)2 / 2 \(\Leftrightarrow\)a4 + b4 \(\ge\)[(a + b)2 /2]2 /2 = 2 ( đpcm)
Dấu "=" xảy ra khi a = b = 1
Thay a = b = 1 vào bt ta có:
\(\frac{5a^2}{b}\)+ \(\frac{3b^2}{a^2}\)\(\ge\)8