Cho tam giác ABC vuông tại A. Đường phân giác của góc B cắt AC tại D. Vẽ DH vuông góc BC (H thuộc BC)
a) Chứng minh: tam giác ABD = tam giác HBD
b) Chứng minh: DA < DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
b: Ta có: ΔABD=ΔHBD
nên DA=DH
mà DH<DC
nên DA<DC
a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có
DA=DH
góc ADK=góc HDC
=>ΔDAK=ΔDHC
=>DK=DC
=>ΔDKC cân tại D
a) Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔBAD=ΔBHD(cạnh huyền-góc nhọn)
a: AC=4cm
b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó; ΔBAD=ΔBHD
c: Ta có: ΔBAD=ΔBHD
nên DA=DH
mà DH<DC
nên DA<DC
a: AC=4cm
b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó; ΔBAD=ΔBHD
c: Ta có: ΔBAD=ΔBHD
nên DA=DH
mà DH<DC
nên DA<DC
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Chu vi tam giác ABC là:
\(C_{ABC}=AB+AC+BC=6+8+10=24\left(cm\right)\)
b) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(Cạnh huyền-góc nhọn)
BC^2 = AC^2 + BA^2
= 8^2 + 6^2
= 64+36= 100
BC^2 = \(\sqrt{100}\)
⇒BC = 10
CHU VI HÌNH TAM GIÁC LÀ: 10+8+6=24(cm)
xét tam giác ΔABD vs ΔHBD cs
góc A = góc H = 90 độ
AD cạnh chung
góc B1 = góc B2
nên ΔABD = ΔHBD ( ch-gn)
xét ΔHDC cs góc H = 90 độ
⇒DH < DC ( do DC là cạnh huyền )
mà DH = DA ( ΔABD = ΔHBD )
nên DC > DA
a: BC=10cm
b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó:ΔABD=ΔHBD
c: Ta có: ΔABD=ΔHBD
nên DA=DH
mà DH<DC
nên DA<DC
a: Xét ΔABD và ΔHBD có
BA=BH
\(\widehat{ABD}=\widehat{HBD}\)
BD chung
Do đó: ΔABD=ΔHBD
b: Xét ΔADK vuông tại A và ΔHDC vuông tại H có
DA=DH
\(\widehat{ADK}=\widehat{HDC}\)
Do đó: ΔADK=ΔHDC
Suy ra: DK=DC
A)XÉT \(\Delta ABD\)VÀ\(\Delta HBD\)CÓ
\(\widehat{BAD}=\widehat{BHD}=90^o\)
\(\widehat{ABD}=\widehat{DBH}\left(GT\right)\)
BD LÀ CẠNH CHUNG
=>\(\Delta ABD\)=\(\Delta HBD\)(CẠNH HUYỀN - GÓC NHỌN ) ( ĐPCM)
GỌI I LÀ GIAO ĐIỂM CỦA BD VÀ AH
XÉT \(\Delta ABI\)VÀ\(\Delta HBI\)CÓ
\(AB=BH\left(\Delta ABD=\Delta HBD\right)\)
\(\widehat{ABD}=\widehat{DBH}\left(GT\right)\)
BI LÀ CẠNH CHUNG
=>\(\Delta ABI\)=\(\Delta HBI\)(C-G-C)
\(\Rightarrow\widehat{AIB}=\widehat{HIB}\)( HAI GÓC TƯƠNG ỨNG)
MÀ HAI GÓC NÀY KỀ BÙ
\(\Rightarrow\widehat{AIB}=\widehat{HIB}=\frac{180^o}{2}=90^o\left(1\right)\)
mà\(\Delta ABI\)=\(\Delta HBI\)(C-G-C)
=> AI=HI( HAI CẠNH TƯƠNG ỨNG ) (2)
TỪ 1 VÀ 2 => BI LÀ ĐƯỜNG TRUNG TRỰC CỦA AH HAY BD LÀ ĐƯỜNG TRUNG TRỰC CỦA AH(ĐPCM)
B)
b)
Vì \(\Delta\)DBA =\(\Delta\) DBH ( cm ở câu a )
=) AD = DH
Xét\(\Delta\)DHC ( DHC = 90 ) có :
DC là cạnh huyền
\(\Rightarrow\) DC là cạnh lớn nhất
\(\Rightarrow DC>DH\)
mà DH = AD
\(\Rightarrow AD< DC\)
a, Xét △ABD vuông tại A và △HBD vuông tại H
Có: BD là cạnh chung
ABD = HBD (gt)
=> △ABD = △HBD (ch-gn)
=> AB = BH (2 cạnh tương ứng) => B thuộc đường trung trực của AH
và AD = HD (2 cạnh tương ứng) => D thuộc đường trung trực của AH
=> BD là đường trung trực của AH
b, Xét △HDC vuông tại H có: DC > DH (quan hệ giữa đường xiên và đường vuông góc)
=> DC > AD
a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔABD=ΔHBD
b: ΔBAD=ΔBHD
=>DA=DH
mà DH<DC
nên DA<DC