K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2022

a, Thay m = 0 ta được (d) : y = -4x - 3 

Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2+4x+3=0\Leftrightarrow x=-1;x=-3\)

Với x = -1 => y = 1 

Với x = -3 => y = 9 

Vậy (P) cắt (d) tại A(-1;1) ; B(-3;9) 

b, Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-\left(m^2-4\right)x-m^2+3=0\)

\(\Delta=\left(m^2-4\right)^2-4\left(-m^2+3\right)\)

\(=m^4-8m^2+16+4m^2-12=m^4-4m^2+4=\left(m^2-2\right)^2\)

Để pt luôn có 2 nghiệm pb khi \(m^2-2\ne0\Leftrightarrow m\ne\pm\sqrt{2}\)

26 tháng 3 2022

a. 

*)với m =0 thì (d): y=-4x-3

*) Xét....: x2=-4x-3 ⇔ x2+4x+3=0

Vì 1-4+3=0 nên PT có nghiệm x1=-1 hoặc x2=-3

* )x1=-1 thì y1=1 =>A(...)

*)x2=-3 thì y2=9 => B(..) 

b) Xét ...............

x2=(m2-4)x+m2-3

⇔x2-(m2-4)x-m2+3=0 (1)

a=1; b=-(m2-4); c=-m2+3

Để.......... (1) có 2 nghiệm phân biệt

Cách 1: Δ>0 (Tự làm)

Cách 2: a-b+c=1+(m2-4)-m2+3=0

Pt(1) có 2 nghiệm: 

x1=-1 và x2=-(-m2+3)=m2-3

Để.... thì x1≠x2 hay: m2-3≠-1 ⇒m≠\(\pm\sqrt{2}\)

Vậy với m≠\(\pm\sqrt{2}\) thì  đường thẳng d luôn cắt (P) tại hai điểm phân biệt.

 

a: Thay x=0 và y=-5 vào (d), ta được:

2(m+1)*0-m^2-4=-5

=>m^2+4=5

=>m=1 hoặc m=-1

b:

PTHĐGĐ là;

x^2-2(m+1)x+m^2+4=0

Δ=(2m+2)^2-4(m^2+4)

=4m^2+8m+4-4m^2-16=8m-12

Để PT có hai nghiệm phân biệt thì 8m-12>0

=>m>3/2

x1+x2=2m+2; x1x2=m^2+4

(2x1-1)(x2^2-2m*x2+m^2+3)=21

=>(2x1-1)[x2^2-x2(2m+2-2)+m^2+4-1]=21

=>(2x1-1)[x2^2+2x2-x2(x1+x2)+x1x2-1]=21

=>(2x1-1)(x2^2+2x2-x1x2-x2^2+x1x2-1]=21

=>(2x1-1)(2x2-1)=21

=>4x1x2-2(x1+x2)+1=21

=>4(m^2+4)-2(2m+2)+1=21

=>4m^2+16-4m-4-20=0

=>4m^2-4m-8=0

=>(m-2)(m+1)=0

=>m=2(nhận) hoặc m=-1(loại)

b: Khi m=2 thì \(y=\left(2\cdot2-1\right)x-2^2+2=3x-2\)

Phương trình hoành độ giao điểm là:

\(x^2-3x+2=0\)

=>x=2 hoặc x=1

Khi x=2 thì y=4

Khi x=1 thì y=1

c: Phương trình hoành độ giao điểm là:

\(x^2-\left(2m-1\right)x+m^2-2=0\)

\(\text{Δ}=\left(2m-1\right)^2-4\left(m^2-2\right)\)

\(=4m^2-4m+1-4m^2+8=-4m+9\)

Để (P) cắt (d) tại hai điểm phân biệt thì -4m+9>0

=>-4m>-9

hay m<9/4

NV
2 tháng 4 2021

b. Phương trình hoành độ giao điểm:

\(x^2=4x-m\Leftrightarrow x^2-4x+m=0\) (1)

d cắt (P) tại 2 điểm phân biệt khi và chỉ khi (1) có 2 nghiệm pb

\(\Leftrightarrow\Delta'=4-m>0\Rightarrow m< 4\)

Khi đó kết hợp hệ thức Viet và điều kiện đề bài:

\(\left\{{}\begin{matrix}x_1+x_2=4\\2x_1+x_2=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=4\\x_1=-9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-9\\x_2=13\end{matrix}\right.\)

Mà \(x_1x_2=m\)

\(\Rightarrow m=-9.13=-117\)

a) Thay m=6 vào (d), ta được: y=4x-6

Phương trình hoành độ giao điểm của (P) và (d) là:

\(2x^2=4x-6\)

\(\Leftrightarrow2x^2-4x+6=0\)

\(\text{Δ}=\left(-4\right)^2-4\cdot2\cdot6=16-48=-32\)(loại)

Vì Δ<0 nên phương trình vô nghiệm

Vậy: Khi m=6 thì (P) và (d) không có điểm chung

13 tháng 6 2021

a) pt hoành độ giao điểm: \(x^2-2x+3-m^2=0\) 

Để đường thẳng d cắt (P) tại 2 điểm phân biệt thì \(\Delta'>0\)

\(\Delta'=1+m^2-3\Rightarrow m^2-2>0\Rightarrow\left|m\right|>\sqrt{2}\)

b) Gọi giao điểm là \(A\left(x_1,y_1\right);B\left(x_2,y_2\right)\)

\(\Rightarrow A\left(x_1,x_1^2\right);B\left(x_2,x_2^2\right)\)

Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=3-m^2\end{matrix}\right.\)

Theo đề: \(y_1-y_2=8\Rightarrow x_1^2-x_2^2=8\Rightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)=8\)

\(\Rightarrow x_1-x_2=4>0\)

Ta có: \(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=4m^2-8\)

\(\Rightarrow x_1-x_2=\sqrt{4m^2-8}\left(x_1-x_2>0\right)\Rightarrow4=\sqrt{4m^2-8}\)

\(\Rightarrow4m^2-8=16\Rightarrow m=\pm\sqrt{6}\)

 

 

 

18 tháng 5 2021

1/

\(\hept{\begin{cases}3x+4y=6\left(1\right)\\2x-y=-7\left(2\right)\end{cases}}\)

\(\left(2\right)\Leftrightarrow8x-4y=-28\left(3\right)\)

Cộng 2 vế của (1) với (3) \(\Rightarrow11x=-22\Rightarrow x=-2\) Thay vào (2) \(\Rightarrow2.\left(-2\right)-y=-7\Rightarrow y=3\)

2/

a/ d cắt p tại 2 điểm phân biệt khi \(x^2=5x+m\Leftrightarrow x^2-5x-m=0\) có 2 nghiệm phân biệt

Điều kiện \(\Delta=25+4m>0\Leftrightarrow m>-\frac{25}{4}\)

b/ Khi m=-4

\(x^2-5x+4=0\Rightarrow x_1=1;x_2=4\)

Khi m=-4 d cắt p tại 2 điểm phân biệt A(1;0) và B(4;0)

NV
26 tháng 3 2022

Phương trình hoành độ giao điểm:

\(-\dfrac{1}{2}x^2=mx+m-3\Leftrightarrow x^2+2mx+2m-6=0\) (1)

a. Khi \(m=-1\), (1) trở thành:

\(x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=-8\\x=-2\Rightarrow y=-2\end{matrix}\right.\)

Vậy (d) cắt (P) tại 2 điểm có tọa độ là \(\left(4;-8\right)\) ; \(\left(-2;-2\right)\)

b. 

\(\Delta'=m^2-2m+6=\left(m+1\right)^2+5>0;\forall m\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m

Hay (d) cắt (P) tại 2 điểm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)

\(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)

\(\Leftrightarrow4m^2-2\left(2m-6\right)=14\)

\(\Leftrightarrow4m^2-4m-2=0\Rightarrow m=\dfrac{1\pm\sqrt{3}}{2}\)

25 tháng 9 2017

b) (d) cắt (P) tại 2 điểm A, B phân biệt nằm về 2 phía của trục tung khi và chỉ khi

Đề kiểm tra Toán 9 | Đề thi Toán 9

Khi đó 2 nghiệm của phương trình là:

Đề kiểm tra Toán 9 | Đề thi Toán 9
Đề kiểm tra Toán 9 | Đề thi Toán 9

Kẻ BB' ⊥ OM ; AA' ⊥ OM

Đề kiểm tra Toán 9 | Đề thi Toán 9

Ta có:

S A O M  = 1/2 AA'.OM ; S B O M  = 1/2 BB'.OM

Theo bài ra:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Do m > 0 nên m = 8

Vậy với m = 8 thì thỏa mãn điều kiện đề bài.

15 tháng 5 2021

a) Xét phương trình hoành độ giao điểm chung của (d) và (P) :

\(x^2=\left(2m-1\right)x-m^2+2\)

\(\Leftrightarrow x^2-\left(2m-1\right)x+m^2-2=0\left(1\right)\)

Thay m=2 vào pt (1) ta được:

\(x^2-3x+2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=1\\x=2\Rightarrow y=4\end{cases}}\)

Tọa độ giao điểm của (d) và (P) khi m=2 là \(A\left(1;1\right);B\left(2;4\right)\)

b) \(\Delta_{\left(1\right)}=\left(2m-1\right)^2-4m^2+8\)

\(=4m^2-4m+1-4m^2+8\)

\(=9-4m\)

Để pt (1) có 2 n ghiệm pb \(\Leftrightarrow9-4m>0\Leftrightarrow m< \frac{9}{4}\)

Theo hệ thức Vi-et ta có: 

\(\hept{\begin{cases}x_1+x_2=2m-1\\x_1.x_2=m^2-2\left(1\right)\end{cases}}\)

Ta có: \(\hept{\begin{cases}x_1+x_2=2m-1\\x_1-3x_2=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x_1+3x_2=6m-3\\x_1-3x_2=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1=\frac{3m+2}{2}\\x_2=\frac{m-4}{2}\end{cases}\left(3\right)}\)

Thay (3) vào (2) ta được:

\(\frac{3m+2}{2}.\frac{m-4}{2}=m^2-2\)

\(\Leftrightarrow\frac{3m^2-10m-8}{4}=m^2-2\)

\(\Rightarrow3m^2-10m-8=4m^2-8\)

\(\Leftrightarrow m^2+10m=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=0\\m=-10\end{cases}\left(tm\right)}\)

Vậy ...