Chứng tỏ trong 3 số tự nhiên bất kỳ luôn có 2 số có tổng chia hết cho 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 số tự nhiên không chia hết cho 3 lần lượt là : 3k + 1 ; 3k + 2 ; 3k + 4
Xét 3k + 1 + 3k + 2
= 6k + 3 chia hết cho 3
1)Một số khi chia cho 3 sẽ nhận 1 trong 3 số dư. Mà có 5 số => Có ít nhất 2 số cùng số dư khi chia cho 3.
+Nếu có 3 số cùng dư trở lên thì lấy 3 trong số các số đó cộng lại sẽ được tổng chia hết cho 3.
+Nếu chỉ có 2 số có cùng số dư thì chia 5 số thành 3 cặp: (a_1,a_2);(a_3,a_4);a_5. Trong đó các số cùng cặp sẽ có cùng số dư khi chia cho 3.Các cặp này phải lần lượt nhận các số dư khác nhau khi chia cho 3. Chọn một số bất kì từ mỗi cặp và cộng lại sẽ được tổng chia hết cho 3 (do tổng 3 số dư chia hết cho 3)
Một số khi chia cho 3 sẽ nhận 1 trong 3 số dư. Mà có 5 số => Có ít nhất 2 số cùng số dư khi chia cho 3.
+Nếu có 3 số cùng dư trở lên thì lấy 3 trong số các số đó cộng lại sẽ được tổng chia hết cho 3.
+Nếu chỉ có 2 số có cùng số dư thì chia 5 số thành 3 cặp: (a1,a2);(a3,a4);a5. Trong đó các số cùng cặp sẽ có cùng số dư khi chia cho 3.Các cặp này phải lần lượt nhận các số dư khác nhau khi chia cho 3. Chọn một số bất kì từ mỗi cặp và cộng lại sẽ được tổng chia hết cho 3 (do tổng 3 số dư chia hết cho 3)
Giả sử không tìm được số nào trong n số tự nhiên liên tiếp đã cho mà chia hết cho n. Khi đó n số này chia cho n chỉ nhận được nhiều
nhất là \(n-1\) số dư khác nhau \(\left(1;2;3;.....;n-1\right)\), theo nguyên lí Dirichlet tồn tại hai số chia cho n có cùng số dư, chẳng
hạn là a và b với a > b, khi đó a - b chia hết cho n, điều này mâu thuẫn với \(0< a-b< n\). Từ đó suy ra điều phải chứng minh.
Một số khi chia cho 3 sẽ nhận 1 trong 3 số dư. Mà có 5 số => Có ít nhất 2 số cùng số dư khi chia cho 3.
+Nếu có 3 số cùng dư trở lên thì lấy 3 trong số các số đó cộng lại sẽ được tổng chia hết cho 3.
+Nếu chỉ có 2 số có cùng số dư thì chia 5 số thành 3 cặp: (a1,a2);(a3,a4);a5. Trong đó các số cùng cặp sẽ có cùng số dư khi chia cho 3.Các cặp này phải lần lượt nhận các số dư khác nhau khi chia cho 3. Chọn một số bất kì từ mỗi cặp và cộng lại sẽ được tổng chia hết cho 3 (do tổng 3 số dư chia hết cho 3)
a ) Gọi 11 số tự nhiên liên tiếp 1 bất kì là a ; a + 1 ; a + 2 ; a + 3 ; a + 4 ; a + 5 ; a + 6 ; a + 7 ; a + 8 ; a + 9 ; a + 10
Ta thấy : ( a + 10 ) - a = 10 .
Mà 10 lại chia hết cho 10
Suy ra trong 11 số tự nhiên liên tiếp luôn có 2 số có hiệu là 10 ( ko phải ít nhất nha bạn )
b ) Gọi 100 số tự nhiên liên tiếp bất kì là 50a ; 50a + 1 ; ... ; 50a + 99
Ta thấy ( 50a + 49 ) + ( 50a + 51 ) = 100a + 100
( 50a + 48 ) + ( 50a + 52 ) = 100a + 100
( 50a + 1 ) + ( 50a + 49 ) = 100a + 50
Mà 50 và 100 thì lại chia hết cho 50
Suy ra trong 100 số tự nhiên liên tiếp luôn có ít nhất 2 số có tổng chia hết cho 50
a, ta có 5 số tn liên tiếp là n;n+1;n+2;n+3;n+4 nếu n chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 1 => n +4 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 2 => n +3 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 4 => n +1 chia hết cho 5 => ĐPCM
Vậy trong 5 số tự nhiên liên tiếp luôn có một số chia hết cho 5
(Nguyên lí Đi-rích-lê: Khi cho n+1 con thỏ vào n cái chuồng thì luôn có ít nhất một chuồng có nhiều hơn 2 con)
Áp dụng nguyên lí Đi-rích-lê ta có:Khi lấy một số chia cho 109 thì có thể sẽ đc các số dư là:0,1,2,3...,107,108 (109 số dư)
Vậy khi lấy 110 số chia cho 109 sẽ có ít nhất 2 số có cùng số dư khi chia cho 109.
Suy ra hiêu của chúng chia hết cho 109 (đpcm)
Tổng 3 số tự nhiên bất kì luôn có 4 trường hợp:
\(l+l+l\Rightarrow\hept{\begin{cases}2l=c\\2l=c\end{cases}}\)
\(c+c+c\Rightarrow\hept{\begin{cases}c+c=c\\c+c=c\end{cases}}\)
\(c+l+l\Rightarrow\hept{\begin{cases}c+l=l\\l+l=c\end{cases}}\)
\(c+c+l\Rightarrow\hept{\begin{cases}c+c=c\\c+l=l\end{cases}}\)
Ta thấy: Mọi trường hợp đều có 2 số tự nhiên bất kì có tổng là chia hét cho 2 ( chẵn ) (đpcm)
54675765vggny57u