K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2016

Đề đúng : Tìm các cặp số nguyên tố (m,n) sao cho \(m^2-2n^2-1=0\)

Ta có ; \(m^2-2n^2-1=0\Leftrightarrow m^2-1=2n^2\Leftrightarrow\left(m-1\right)\left(m+1\right)=2n^2\)

Cần chú ý :  vì  \(m,n\ge2>0\)nên m + 1 > m - 1

Vì m,n là các số nguyên tố nên chỉ có các trường hợp :  

  • \(\hept{\begin{cases}m-1=1\\m+1=2n^2\end{cases}\Leftrightarrow}\hept{\begin{cases}m=2\\n=\sqrt{\frac{3}{2}}\end{cases}}\)(loại)  hoặc \(\hept{\begin{cases}m=2\\n=-\sqrt{\frac{3}{2}}\end{cases}}\)(loại)
  • \(\hept{\begin{cases}m+1=2n\\m-1=n\end{cases}\Leftrightarrow}\hept{\begin{cases}m=3\\n=2\end{cases}}\)(nhận)
  • \(\hept{\begin{cases}m+1=n^2\\m-1=2\end{cases}\Leftrightarrow}\hept{\begin{cases}m=3\\n=\pm2\end{cases}}\)(nhận n = 2 , loại n = -2)

Vậy : (m,n) = (3;2)

21 tháng 11 2015

d 10^n+72^n -1

=10^n -1+72n

=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n

=9[10^(n-1)+10^(n-2)+..........................-9n+81n

Đặt \(p^n+144=a^2\left(a\in N\right)\)

\(\Rightarrow p^n=\left(a-12\right)\left(a+12\right)\)

Ta thấy : \(a-12+a+12=2a⋮2\)

\(\Rightarrow\left(a-12\right)\left(a+12\right)⋮2\)

\(\Rightarrow p^n⋮2\) mà $p$ nguyên tố \(\Rightarrow p=2\)

Khi đó ta có : \(2^n=\left(a-12\right)\left(a+12\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2^x=a-12\\2^y=a+12\end{matrix}\right.\) với $x+y=a; x,y \in N$,  \(y>x\)

\(\Rightarrow2^y-2^x=24\Rightarrow2^x\left(2^{y-x}-1\right)=24\)

Rồi bạn xét các TH để tìm ra giá trị đề bài nhé! Đến đây dễ rồi.

DD
21 tháng 8 2021

Với \(m\)chẵn: \(m^2+1=\left(2k\right)^2+1=4k^2+1\)

Với \(m\)lẻ: \(m^2+1=\left(2k+1\right)^2+1=4k^2+4k+1+1=4k^2+4k+2\)

Do đó \(m^2+1\)chia cho \(4\)dư \(1\)hoặc \(2\).

Mà với \(n\ge2\)thì \(2^n⋮4\)do đó mâu thuẫn. 

Vậy \(n=0\)hoặc \(n=1\).

Thử với từng giá trị ta thu được nghiệm là \(\left(0,0\right),\left(\pm1,1\right)\).

6 tháng 2 2016

A)(0;0)(1;1)

B)Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

6 tháng 2 2016

a)xy=x+y

=>xy-x-y=0

=>x(y-1)-(y-1)-1=0

=>x(y-1)-(y-1)=1

=>(y-1)(x-1)=1

=>y-1 và x-1 E Ư(1)={+-1}=>y=2 thì x=2 và y=0 thì x=0

b)Câu này khó quá nhưng ủng hộ nha