tim Max
C=-x^2-y^2+xy+2x+2y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=-x^2-y^2+xy+2x+2y\)
\(2C=-2x^2-2y^2+2xy+4x+4y\)
\(2C=-\left(x-y\right)^2-\left(x-2\right)^2-\left(y-2\right)^2+4\le4\)
Dấu \(=\)khi \(x=y=2\).
\(2x^2+y^2-2y=2\left(xy-1\right)\)
\(2x^2+y^2-2y=2xy-2\)
\(2x^2+y^2-2y-2xy+2=0\)
đc đến đây :v
\(xy^2-\left(x-2\right)\left(x^4+2x+1\right)=2y^2\)
\(\Rightarrow xy^2-2y^2-\left(x-2\right)\left(x^4+2x+1\right)=0\)
\(\Rightarrow y^2\left(x-2\right)-\left(x-2\right)\left(x^4+2x+1\right)=0\)
\(\Rightarrow\left(x-2\right)\left(y^2-x^4-2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\y^2-x^4-2x-1=0\end{matrix}\right.\)
Thay \(x=2\) vào \(y^2-x^4-2x-1=0\) ta có:
\(y^2-2^4-2\cdot2-1=0\)
\(\Rightarrow y^2-21=0\)
\(\Rightarrow y^2=21\)
\(\Rightarrow\left[{}\begin{matrix}y=\sqrt{21}\\y=-\sqrt{21}\end{matrix}\right.\)
Vậy (x;y) thỏa mãn là: \(\left(2;\sqrt{21}\right);\left(2;-\sqrt{21}\right)\)
lý thuyết đầy đủ các phuong phap giai phuong trinh nghiem nguyen
cóA=2xy−4xy2−x2y−2x2y2cóA=2xy−4xy2−x2y−2x2y2
=xy(2-4y-x-2xy)
\Rightarrow A lớn nhất \Leftrightarrow xy(2-4y-x-2xy) lớn nhất
mak` theo đề bài ta có 2\geqx\geq0 , \frac{1}{2}\geqy\geq0
do đó max xy(2-4y-x-2xy) =0