K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc INC+góc IMC=180 độ

=>INCM nội tiếp

b: Xét ΔINB vuông tại N và ΔIMA vuông tại M có

góc NIB=góc MIA

=>ΔINB đồng dạng với ΔIMA

=>IN/IM=IB/IA

=>IN*IA=IM*IB

c: góc AIH=góc BIN=góc BCA

=>góc AIH=góc AHI

=>AI=AH

24 tháng 3 2022

Giải thích các bước giải:

a) ΔABCΔABC có đường cao AN,BMAN,BM

⇒AN⊥BC;BM⊥AC⇒AN⊥BC;BM⊥AC

Xét tứ giác IMCNIMCN có:

ˆIMC=ˆINC=900(AN⊥BC;BM⊥AC;I∈AN;I∈BM)IMC^=INC^=900(AN⊥BC;BM⊥AC;I∈AN;I∈BM)

⇒ˆIMC+ˆINC=1800⇒IMC^+INC^=1800

⇒⇒ tứ giác IMCNIMCN nội tiếp

b) Xét ΔBINΔBIN và ΔAIMΔAIM có:

ˆBNI=ˆAMI=900(AN⊥BC;BM⊥AC;I∈AN;I∈BM)BNI^=AMI^=900(AN⊥BC;BM⊥AC;I∈AN;I∈BM)

ˆBIN=ˆAIMBIN^=AIM^ (đối đỉnh)

⇒⇒ ΔBIN∽ΔAIMΔBIN∽ΔAIM (g.g)

⇒IBIA=INIM⇒IA.IN=IM.IB⇒IBIA=INIM⇒IA.IN=IM.IB

c) Tứ giác IMCNIMCN nội tiếp

⇒ˆAIH=ˆNCM⇒AIH^=NCM^ hay ˆAIH=ˆACBAIH^=ACB^

Xét (O)(O) có: ˆACB=ˆAHBACB^=AHB^ (2 góc nội tiếp cùng chắn cung ABAB)

⇒ˆAIH=ˆAHB⇒AIH^=AHB^

⇒ˆAIH=ˆAHI⇒ΔAIH⇒AIH^=AHI^⇒ΔAIH cân tại A⇒AI=AHundefined

 

a: góc INC+góc IMC=90+90=180 độ

=>IMCN nội tiếp

b: Xét ΔIMA vuông tại M và ΔINB vuông tại N có

góc MIA=góc NIB

=>ΔIMA đồng dạng với ΔINB

=>IM/IN=IA/IB

=>IM*IB=IN*IA

c: góc AHI=góc ACB

=>góc AHI=góc AIH

=>AH=AI

a: góc INC+góc IMC=90+90=180 độ

=>IMCN nội tiếp

b: Xét ΔIMA vuông tại M và ΔINB vuông tại N có

góc MIA=góc NIB

=>ΔIMA đồng dạng với ΔINB

=>IM/IN=IA/IB

=>IM*IB=IN*IA

c: góc AHI=góc ACB

=>góc AHI=góc AIH

=>AH=AI

17 tháng 9 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tứ giác AEDC có:

∠(AEC) = ∠(ADC) =  90 0

Mà 2 góc này cùng nhìn cạnh AC

⇒ Tứ giác AEDC là tứ giác nội tiếp

5 tháng 7 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

c) Do tứ giác AEDC là tứ giác nội tiếp nên ∠(CAB) = ∠(IDB) (cùng bù ∠(CDE) )

Mặt khác ∠(CAB) = ∠(CMB) (2 góc nội tiếp cùng chắn cung BC)

⇒ ∠(CMB) = ∠(IDB)

⇒ Tứ giác CMID là tứ giác nội tiếp ( Góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối của đỉnh đó)

a: góc ADH+góc AKH=180 độ

=>ADHK nội tiếp

b: góc BKC=góc BDC=90 độ

=>BKDC nội tiếp

=>góc AKD=góc ACB

Xét ΔAKD và ΔACB có

góc AKD=góc ACB

góc A chung

=>ΔAKD đồng dạng với ΔACB

a: Xét tứ giác BNMC có 

\(\widehat{BNC}=\widehat{BMC}=90^0\)

Do đó: BNMC là tứ giác nội tiếp

hay B,N,M,C cùng thuộc một đường tròn

b: Xét ΔAMB vuông tại M và ΔANC vuông tại N có 

\(\widehat{NAC}\) chung

Do đó: ΔAMB\(\sim\)ΔANC

Suy ra: \(\dfrac{AM}{AN}=\dfrac{AB}{AC}\)

hay \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

Xét ΔAMN và ΔABC có

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

\(\widehat{NAC}\) chung

Do đó: ΔAMN\(\sim\)ΔABC

6 tháng 3 2022

https://hoc24.vn/cau-hoi/cho-tam-giac-nhon-efg-cac-duong-cao-emfngk-cat-nhau-tai-hachung-minh-enmf-noi-tiep-va-widehatkmn2widehatkfnb-chung-minh-fkng-noi-tiep-va-xac-dinh-tam-p-cua-duong-tron-ngoai-tiep-tu-giac.5046725334376

cj giúp e vs ạ

a) Xét tứ giác AEDC có 

\(\widehat{AEC}=\widehat{ADC}\left(=90^0\right)\)

\(\widehat{AEC}\) và \(\widehat{ADC}\) là hai góc cùng nhìn cạnh AC

Do đó: AEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)