Cho hình vẽ biết góc MNP + NPQ bằng 180 độ góc MPQ bằng 50 độ Qx
vuông góc với PQ. Tính góc NMP và góc NRx
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy MR // PQ
\(\Rightarrow\widehat{RMP}+\widehat{MPQ}=180^0\)
\(\Rightarrow\widehat{RMP}+50^0=180^0\)
\(\Rightarrow\widehat{RMP}=30^0\)
Xét Tam giác `MPQ` có:
\(\widehat{M}+\widehat{MPQ}+\widehat{MQP}=180^0\) (đli tổng 2 góc trong 1 Tam giác)
\(50^0+\widehat{MPQ}+90^0=180^0\)
`=>` \(\widehat{MPQ}=40^0\)
\(\widehat{MQP}+\widehat{NQP}=180^0\) (kề bù)
\(90^0+\widehat{NQP}=180^0\)
`=>` \(\widehat{NQP}=90^0\)
Xét Tam giác `NPQ` có:
\(\widehat{N}+\widehat{NQP}+\widehat{NPQ}=180^0\)
\(40^0+90^0+\widehat{NPQ}=180^0\)
`=>` \(\widehat{NPQ}=50^0\)
a) \(PQ = n.\cos a,PQ = m.\cos b\)
b) \(MQ = n.\sin a,PN = m.\sin b \Rightarrow MN = n.\sin a + m.\sin b\)
\(\begin{array}{l}{S_{MPQ}} = \frac{1}{2}m.\cos b.n.\sin a = \frac{1}{2}m.n.\cos b.\sin a\\{S_{NPQ}} = \frac{1}{2}n.\cos a.m.\sin b = \frac{1}{2}m.n.\cos a.\sin b\\{S_{MNP}} = \frac{1}{2}m.n.\sin \left( {a + b} \right)\end{array}\)
c) \({S_{MNP}} = {S_{MPQ}} + {S_{NPQ}} \Rightarrow \frac{1}{2}m.n.\cos b.\sin a + \frac{1}{2}m.n.\cos a.\sin b = \frac{1}{2}m.n.\sin \left( {a + b} \right)\)
\( \Rightarrow \sin \left( {a + b} \right) = \sin a.\cos b + \cos a.\sin b\)
d) \(\sin \left( {a - b} \right) = \sin \left[ {a + \left( { - b} \right)} \right] = \sin a.\cos \left( { - b} \right) + \cos a.\sin \left( { - b} \right) = \sin a.\cos b - \cos a.\sin b\)