K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2016

Đề sai rồi bạn ơi!

NV
2 tháng 3 2019

a/ Ta có \(\dfrac{\left(a+b\right)^2}{4}\ge ab\Rightarrow\left(a+b\right)^2\ge4\Rightarrow a+b\ge2\)

\(\left(a+1\right)\left(b+1\right)=ab+\left(a+b\right)+1=a+b+2\ge2+2=4\) (đpcm)

Dấu "=" xảy ra khi \(a=b=1\)

b/ Áp dụng BĐT \(ab\le\dfrac{\left(a+b\right)^2}{4}\Rightarrow ab\le\dfrac{1}{4}\Rightarrow\dfrac{1}{ab}\ge4\)

Lại áp dụng BĐT: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\) cho 2 số dương ta được:\(\left(a+\dfrac{1}{b}\right)^2+\left(b+\dfrac{1}{a}\right)^2\ge\dfrac{1}{2}\left(a+b+\dfrac{1}{a}+\dfrac{1}{b}\right)^2=\dfrac{1}{2}\left(1+\dfrac{1}{ab}\right)^2\ge\dfrac{1}{2}\left(1+4\right)^2=\dfrac{25}{2}\)

Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)

22 tháng 3 2017

\(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+1+1}=\frac{4}{3}\)

1 dòng :)

27 tháng 3 2017

Ta có:

\(\frac{1}{a+1}+\frac{1}{b+1}=\frac{a+b+2}{\left(a+1\right)\left(b+1\right)}=\frac{3}{ab+2}\left(1\right)\)

Mà \(a+b\ge2\sqrt{ab}\left(1\ge2\sqrt{ab}\right)\Leftrightarrow ab\le\frac{1}{4}\)

Thay vào \(\left(1\right)\) ta được:

\(\frac{3}{ab+2}\ge\frac{3}{\frac{1}{4}+2}=\frac{3}{\frac{9}{4}}=\frac{4}{3}\)

Hay \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\) (Đpcm)

AH
Akai Haruma
Giáo viên
28 tháng 6 2024

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\([(a+\frac{1}{a})^2+(b+\frac{1}{b})^2](1^2+1^2)\geq (a+\frac{1}{a}+b+\frac{1}{b})^2=(1+\frac{1}{a}+\frac{1}{b})^2\)

\(\Rightarrow (a+\frac{1}{a})^2+(b+\frac{1}{b})^2\geq \frac{1}{2}(1+\frac{1}{a}+\frac{1}{b})^2\)

Tiếp tục áp dụng BDDT Bunhiacopxky:

$\frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}=4$

\(\Rightarrow (a+\frac{1}{a})^2+(b+\frac{1}{b})^2\geq \frac{1}{2}(1+\frac{1}{a}+\frac{1}{b})^2\geq \frac{1}{2}(1+4)^2=12,5\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=\frac{1}{2}$

8 tháng 8 2017

a)\(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)

\(\Leftrightarrow a^2-a+\frac{1}{4}+b^2-b+\frac{1}{4}+c^2-c+\frac{1}{4}\ge0\)

\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2\ge0\)

Xảy ra khi \(a=b=c=\frac{1}{2}\)

b)Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1+1\right)\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\Rightarrow a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\)

\(\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(\frac{\left(a+b\right)^2}{2}\right)^2}{2}=\frac{\frac{\left(a+b\right)^2}{4}}{2}>\frac{\frac{1}{4}}{2}=\frac{1}{8}\)

c)\(BDT\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\)

Khi a=b

6 tháng 9 2016

a)\(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Rightarrow a+b\ge2\sqrt{ab}\)

\(\Rightarrow a+b-2\sqrt{ab}\ge0\)

\(\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) với mọi x

->Đpcm

2 phần kia mai tui lm nốt cho h đi ngủ